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Реферат

Отличная от нуля объемная вязкость указывает на нарушение масштабной инвариантности.
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достаточно низких температурах.
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INTRODUCTION

Hydrodynamic description of a viscous electron flow has a long history [1]. The progress in this

field was detained by a lack of experiments (see, however, Ref. [2]). After experimental realization

of graphene there was a revival in theoretical [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] and experimental

[14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] research on the hydrodynamic description of an electron

transport in the two spatial dimensions. Viscosity enters equations of hydrodynamic motion of the

liquid as a principle kinematic coefficient.

In the presence of the rotational symmetry the viscosity tensor of a two dimensional system

can be parametrized by three parameters only,

ηjk,ls =
(
ζ − ηs

)
δjkδls + ηs

(
δjlδks + δjsδkl

)
+ (ηH/2)

(
ϵjlδks + ϵjsδkl + ϵklδjs + ϵksδjl

)
. (1)

Here ζ stands for the bulk viscosity. The shear viscosity is denoted as ηs. The second line of Eq.

(1) appears if the time reversal symmetry is broken, e.g. by a perpendicular magnetic field B.

Similarly to the Hall conductivity, the Hall viscosity, ηH , describes the non–dissipative part of the

viscosity tensor. The existence of the Hall viscosity has been well appreciated long time ago in the

field of high temperature magnetized plasma [25, 26, 27, 28, 29].

In electron systems microscopic calculation of the viscosity tensor has been traditionally

performed for the shear and Hall components only [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,

43, 44, 45]. The latter attracted much interest due to its relation to the geometrical response [31, 32,

33, 34, 35, 36, 37] and quantization for translationally and rotationally invariant gapped quantum

systems [35].

In this thesis bulk viscosity ζ is theoretically investigated for a two­dimensional electronic

system. Two cases is aimed to study separately: a non­interacting electron gas with disorder and

a clean interacting electron liquid. Various calculation techniques have been implemented for this

study, including the diagrammatic technique, the self­consistent Born approximation and others.
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Chapter 1

BULK VISCOSITY OF A

NON­INTERACTING DISORDERED

2D ELECTRON GAS

1.1 Introduction

Although it is frequently said that viscosity exists only in a context of hydrodynamics, in fact, it has

implication on its own: as a linear response that characterizes a change of the stress tensor under a

time–dependent deformations [38].

It is well­known that for a monoatomic gas the Boltzmann kinetic equation predicts zero

value for the bulk viscosity [46, 47]. Zero bulk viscosity implies that the system is scale invariant

and can expand isotropically without dissipation. One more example of such a system is the unitary

Fermi gas [48]. However, generically, interaction breaks scale invariance and results in nonzero

bulk viscosity. The canonical example is the Fermi liquid with nonzero albeit small bulk viscos­

ity [49, 50]. Recently, breaking of scale invariance has been extensively studied in the context

of strongly interacting Fermi gas, both theoretically [51, 52, 53, 54, 55, 56, 57] and experimen­

tally [58, 59, 60], as well as in the quantum chromodynamics [61, 62, 63, 64].

Typically, a condensed matter electron system contains a quenched disorder. A presence of

a random potential in the Hamiltonian inevitably breaks the scale invariance. Therefore, one may

expect a nonzero value of the bulk viscosity even in the absence of electron­electron interactions.

To unravel this issue, we consider a two­dimensional (2D) noninteracting electron gas in

the presence of a perpendicular static magnetic field and a random potential. Based on the Kubo

formula for the bulk viscosity we demonstrate explicitly how a nonzero magnitude of the disorder–

averaged bulk viscosity appears due to the presence of a random potential in the Hamiltonian. We

find that the real part of the bulk viscosity as a function of frequency contains two contributions:

(i) a delta­function peak with the weight which is determined by such thermodynamic quantities

as pressure and isentropic compressibility; and (ii) a smooth part depending on the total elastic

scattering time τ0. Within the self­consistent Born approximation (SCBA) we derive expression
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for the smooth contribution to the real part of the bulk viscosity at a finite frequency. In the absence

of the magnetic field it acquires a remarkably simple form for all frequencies, ω, and temperatures,

T , much smaller than the chemical potential, µ,

Re ζ(ω) = ħ2ν0/(2τ0), ħ|ω|, kBT≪µ. (1.1)

Here ν0 denotes the density of states at the Fermi level. We emphasize that Re ζ(ω) is proportional

to the elastic scattering rate in contrast to the shear viscosity which, as other standard transport

quantities, is proportional to the elastic scattering time. The result (1.1) indicates that in order to

derive nonzero bulk viscosity within the kinetic equation approach one needs to take into account

higher order corrections due to impurity scattering.

Throughout the thesis we use the units in which ħ = kB = c = 1.

1.2 Formalism

A 2D electron gas in the presence of an external static perpendicular magnetic fieldB and a random

potential V (r) is described by the following Hamiltonian,

H =
(
−i∇− eA

)2
/(2me) + V (r). (1.2)

Here me denotes the electron mass. The vector potential A(r) corresponds to the static magnetic

field B, ∇ × A = Bez. We shall work in the Landau gauge: Ay = Bx and Ax = Az = 0. We

assume the Gaussian distribution for a random potential with zero mean and characterized by the

pair correlation function V (r)V (r′) = W (|r − r′|). The function W (r) is assumed to decay at

a typical length scale dW . The magnetic field B is assumed to be strong enough to polarize the

electron spins.

In the microscopic theory the disorder­averaged viscosity tensor can be computed from the

Kubo formula (see Eqs. (3.4), (3.11), and (3.14) of Ref. [38]):

ηjk,ls(ω)=
δjkδls
iω+

(κ−1−P )−
∫

dεfε
πAω+

Tr[Tjk, Jls] ImGR
ε

∫
dεdΩ

π2A

(
fε − fε+Ω

)
i(Ω− ω+)ω+

TrTjk ImGR
ε+ΩTls ImGR

ε .

(1.3)

Here P stands for the internal pressure of the electron gas, κ−1 denotes the inverse isentropic com­

pressibility at constant particle number, A is the system area, and ω+ = ω + i0. The retarded

Green’s function is defined in a standard way,GR
ε = 1/(ε−H+ i0); fε = 1/[1+ exp((ε− µ)/T )]

denotes the Fermi distribution function with the chemical potential µ and temperature T . The stress

tensor operator Tjk = me(vjvk + vkvj)/2 is not affected by the presence of a random potential.

8



Here v = (−i∇ − eA)/me is the velocity operator [38, 42]. The strain generator operator Jjk
is related with the stress tensor operator as Tjk = −i[H, Jjk]. We note that contrary to the stress

tensor operator, the expression for Jjk is sensitive to the presence of a random potential. Disorder

averaging in Eq.(1.3) is denoted by an overbar.

Bulk viscosity ζ can be derived from the viscosity tensor by tracing the spatial indices,

ζ = ηjj,ll/d
2, where d = 2 is the spatial dimension. Using Eq.(1.3), we find

ζ(ω) =
κ−1 − P −X

iω+
+

∫
dεdΩ

(πd)2A

(
fε − fε+Ω

)
i(Ω− ω+)ω+

TrTΣ ImGR
ε+ΩTΣ ImGR

ε , (1.4)

where TΣ = Tjj and the frequency independent quantity X is defined as

X = i

∫
dεfε
πd2A

Tr[TΣ, JΣ] ImGR
ε . (1.5)

Here we introduce JΣ = Jjj . Using the relation TΣ = 2(H − V ), we can rewrite Eq. (1.4) as

follows

ζ(ω) =
κ−1 − P −X

iω+
+ 4

∫
dεdΩ

(πd)2A

(
fε − fε+Ω

)
i(Ω− ω+)ω+

TrV ImGR
ε+ΩV ImGR

ε . (1.6)

It is worthwhile to emphasize that the last term in the right hand side of the above expression

represents the many­body two­point correlation function of a random potential. Thus the structure

of Eq. (1.6) resembles the structure of the Kubo formula for the interacting clean Fermi gas (see

Ref. [65] and references therein). In our case a random potential plays a role of the contact operator

[66, 67, 68].

The expression (1.6) suggests the following sum rule for the disorder averaged bulk viscos­

ity,
∞∫

−∞

dω

π
ζ(ω) = P +X − κ−1. (1.7)

This expression is analogous to the sum rule found for the interacting clean Fermi gas [51, 65].

Using Eq. (1.6), we obtain the followingKubo formula for the real part of the bulk viscosity,

Re ζ(ω) =
4

d2

∫
dε

πA
fε − fε+ω

ω
TrV ImGR

ε+ωV ImGR
ε + πDδ(ω), (1.8)

where the weight of the delta­function peak at ω = 0 is given as

D = P +X − κ−1 − Re
4

d2

∫
dεdΩ

π2A
fε − fε+Ω

Ω− i0
TrV ImGR

ε+ΩV ImGR
ε . (1.9)

We emphasize that the appearance of a random potential V as vertices in Eq. (1.8) reflects the fact

9



that the bulk viscosity vanishes in the clean case.

1.3 The weight of the zero frequency delta­function peak

The expression for the weight (1.9) involves the internal pressure which is proportional to the

average value of the trace of the stress tensor, P = ⟨TΣ⟩/(dA). We note that the presence of a

random potential affects the standard relation for a Fermi gas between the internal pressure and the

energy,

P = ⟨TΣ⟩/(dA) = −
∫

dε

πdA
fεTrTΣ ImGR

ε =
2

d
E +

2

d

∫
dε

πA
fεTrV ImGR

ε , (1.10)

where we used the relation TΣ = 2(H − V ). Here E =
∫
dεν(ε)εfε denotes the energy density

where ν(ε) stands for the disorder­averaged density of states. We mention that the relation (1.10)

is analogous to the Tan’s relation for the pressure of an interacting Fermi gas [68]. In our case the

random potential plays a role of the contact operator.

Next, using the relation [TΣ, JΣ] = 2iTΣ
1, we obtain

X =
2

d
P. (1.11)

Interestingly, this relation is not affected by the presence of a random potential.

Using Eq. (1.11), we rewrite the expression (1.9) for the weight as

D =
2 + d

d
P − κ−1 − 4

d2

∑
a̸=b

fEa − fEb

Ea − Eb

|⟨a|V |b⟩|2. (1.12)

Here Ea and |a⟩ denote the exact eigen energies and eigen states for the Hamiltonian H , H|a⟩ =
Ea|a⟩. We note that the above expression for the weight D explicitly involves a random potential.

With the help of Eq. (1.11) the sum rule (1.7) can be rewritten as

∞∫
−∞

dω

π
ζ(ω) =

2 + d

d
P − κ−1. (1.13)

We note that the right hand side of Eq.(1.13) is purely real and depends on the thermodynamic

quantities only .

In the absence of the magnetic field and disorder, the inverse isentropic compressibility is
1This result can be derived from the expansion of the relation e−2λ(H − V ) + V = e−iλJΣHeiλJΣ to the second

order in λ. See Ref. [38] for more details.
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defined as κ−1 = −A
(
∂P/∂A

)
sA,neA

, where s and ne denote the entropy and electron densities,

respectively. Using the thermodynamic relation Ts = E + P − µne we find that a variation of the

area δA under conditions sA = const and neA = const results in the following variation of the

energy density, δE = −(E + P )δA/A. Also, a variation of the area leads to the variation of the
electron density, δne = −neδA/A. Hence, we obtain [65]

κ−1 = (E + P )

(
∂P

∂E

)
ne

+ ne

(
∂P

∂ne

)
E
. (1.14)

We note that κ−1 is related with the sound velocity, cs = 1/
√
κmene. In the absence of the disorder,

V = 0, and the magnetic field, B = 0, the energy density and the pressure of the ideal Fermi gas

are related as P = 2E/d [69]. This relation implies that the pressure is fixed if the energy density
is fixed, i.e (∂P/∂ne)E ≡ 0. Then, from Eq. (1.14), we find κ−1 = (d + 2)P/d. As a result,

we obtain that the weight of the delta­function peak is zero, D = 0. Therefore, Eq. (1.6) implies

that the bulk viscosity vanishes identically, ζ(ω) = 0, for the ideal Fermi gas in agreement with its

scale invariance.

For clean 2D electron gas in presence of magnetic field Eq. (1.12) simplifies to

D = 2P − κ−1. (1.15)

In that case internal pressure differs from ordinary thermodynamic pressure on the contribu­

tion associated with the action of the Lorentz force on the edge current and expressed as P =

−(∂(EA)/∂A)sA,neA,B −mB ≡ −(∂(EA)/∂A)sA,neA,BA, where m stands for the magnetization

density [70]. Isentropic compressibility κ−1 = −A
(
∂P/∂A

)
sA,neA,BA is defined at the constant

particle number and the magnetic flux.

Using the thermodynamic relation Ts = E + P + mB − µne, we find that a variation of

the area δA under conditions sA = const, neA = const, and BA = const results in the following

variation of the energy density, δE = −(E + P )δA/A. Also, a variation of the area yields the
variations of the electron density, δne = −neδA/A and the magnetic field, δB = −BδA/A.
Hence, we obtain

κ−1 = (E + P )

(
∂P

∂E

)
ne,B

+ ne

(
∂P

∂ne

)
E,B

+B

(
∂P

∂B

)
E,ne

. (1.16)

Again, in the absence of a random potential, the weight of the delta­function peak vanishes. It is

easy to check this statement at zero temperature. Then for N filled Landau levels we find P =

E = mω2
cN

2/(4π) and κ−1 = 2E . Hence Eq. (1.15) leads to D = 0.
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1.4 Self­consistent Born approximation

In order to take into account a random potential we employ the self­consistent Born approxima­

tion [71]. This approximation is justified under the following conditions [72, 73, 74],

1/kF , dW≪lB, dW≪vF τ0. (1.17)

Here lB = 1/
√
eB stands for the magnetic length and kF = mevF stands for the Fermi momentum

with the Fermi velocity denoted as vF . The total elastic relaxation time, τ0, in the absence of the

magnetic field is defined by the following relation

1

τn
= ν0

2π∫
0

dϕ

2π
W̃

(
2kF sin(ϕ/2)

)
cos(nϕ), n = 0, 1, 2, . . . (1.18)

Here W̃ (q) stands for the Fourier transform ofW (r). We note that the condition kF lB≫1 is equiv­

alent to the condition N≫1 where N is the number of filled Landau levels.

Within the SCBA the physical quantities of interest are usually fully expressed in terms of

the disorder averaged retarded Green’s function GR
ε . It satisfies the self­consistency equation, see

Fig. 1.1(a),

GR
n = (ε− ϵn − ΣR

ε )
−1, ΣR

ε =
ωc

2πτ0

∑
n

GR
n , (1.19)

where ϵn = ωc(n + 1/2) denotes the energy of the n­th Landau level (LL) and ΣR
ε stands for the

disorder averaged self energy. Here ωc = eB/me is the cyclotron frequency. The self­consistency

relation (1.19) can be solved analytically forΣR
ε in two limiting cases [71]. In the regime of a weak

magnetic field, ωcτ0≪1, when LLs overlap, one can perform summation over LL index n with the

help of the Poisson formula and find [71]

ΣR
ε = − i

2τ0

(
1− 2δe2πiε/ωc

)
, (1.20)

where δ = exp(−π/ωcτ0)≪1 is the Dingle parameter. In the opposite case of well separated LLs,

ωcτ0≫1, one can restrict the summation over LL index n in Eq. (1.19) to n = N only, where ϵN is

the closest LL energy to the energy of interest: |ε− ϵN | < ωc/2. Then one obtains [71]

ΣR
ε =

1

2

(
ε− ϵN − i

√
Γ2 − (ε− ϵN)2

)
. (1.21)

Here the LL broadening is controlled by the energy scale Γ =
√

2ωc/(πτ0). The disorder–averaged
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Figure 1.1: Diagrams used in SCBA. (a) The self­energy diagram; (b) and (c) Diagrams corre­
sponding to the bulk viscosity within SCBA. Bold solid lines denote the disorder averaged Green’s
function Gε, dashed lines stand for the pair correlation functionW (r).

density of states can be expressed in terms of the disorder–averaged Green’s function as

νε = − 1

2π2l2B

∑
n

ImGR
n (ε) = −2τ0ν0 ImΣR

ε . (1.22)

Using Eqs. (1.20) and (1.21), we find the disorder–averaged density of states [71]

νε = ν0


1− 2δ cos(2πε/ωc), ωcτ0≪1,

τ0
∑
n

Re
√

Γ2 − (ε− ϵn)2, ωcτ0≫1.
(1.23)

1.5 Bulk viscosity within SCBA

The bulk viscosity at nonzero frequency, ω ̸= 0, is given by the first term in the right hand side of

Eq. (1.8). We assume that frequency and temperature are much smaller than the chemical potential,

|ω|, T≪µ. Under this assumption, the integral over energy ε is dominated by the vicinity of the

chemical potential. The unusual feature of the Kubo formula for the real part of the bulk viscosity,

Eq. (1.8), is that vertex is a random potential. The diagrams contributing to Re ζ(ω) within SCBA

are shown in Fig. 1.1(b) and (c).

We start from computation of the diagram of Fig. 1.1(b). Using Eq. (1.19), we can rewrite

13



this contribution as

Re ζ(b) =
∫

dε

π

fε − fε+ω

ω

1

2πl2B

∑
n

ImGR
n (ε) ImΣR

ε+ω =

∫
dε

fε − fε+ω

ω

νενε+ω

2τ0ν0
. (1.24)

We note that the contribution to Re ζ from the diagram of Fig. 1.1(b) can be expressed solely in

terms of the density of states, νε, computed within SCBA.

In addition to the diagram in Fig. 1.1(b) within SCBA one needs to take into account a set

of diagrams shown in Fig. 1.1(c). They correspond to the impurity ladder insertion and describe

vertex renormalization. As we shall see below, in spite of the scalar nature of the vertex (a random

potential), the diagrams of Fig. 1.1(c) provide a significant contribution to the real part of the bulk

viscosity in the case of a strong magnetic field. Evaluation of the four diagrams in Fig. 1.1(c) yields

(see App.A.1)

Re ζ(c) = ν0

∫
dε

fε − fε+ω

ω
Re

[(
ΣR

ε + ΣA
ε+ω

)2
ΠRA

0 (ω)

1− ΠRA
0 (ω)/τ0

−
(
ΣR

ε + ΣR
ε+ω

)2
ΠRR

0 (ω)

1− ΠRR
0 (ω)/τ0

]
. (1.25)

Here the polarization operator,

ΠRA
0 (ω) =

ωc

2π

∑
n

GR
n (ε+ ω)GA

n (ε) =
τ0(Σ

A
ε − ΣR

ε+ω)

ω + ΣA
ε − ΣR

ε+ω

, (1.26)

provides the contribution to the “bubble” without the impurity ladder insertion. The expression for

ΠRR
0 (ω) can be obtained from Eq. (1.26) by changing superscriptA toR. Combining contributions

(1.24) and (1.25), we find the following expression for the disorder–averaged bulk viscosity of a

2D electron gas,

Re ζ(ω) =
∫

dε
fε − fε+ω

ω

νενε+ω

τ0ν0
Re

[
1

2
−

ΣR
ε+ω − ΣR

ε

ω
−

ν2
ε+ω − ν2

ε

ωνενε+ω

(
ΣR

ε+ω + ΣR
ε

)]
. (1.27)

We emphasize that the above expression involves not only the density of states, νε, com­

puted within SCBA but also the real part of the SCBA self energy. In the limit of zero frequency

the expression (1.27) becomes

Re ζ(ω→0) =

∫
dε

2τ0ν0

(
−f ′

ε

)
ν2
ε

[
1− 2

∂ε
(
ν4
ε ReΣR

ε

)
ν4
ε

]
. (1.28)

In the absence of a magnetic field the density of states and self­energies are independent of energy.

Therefore, Eq. (1.27) transforms into remarkably simple result (1.1). It is instructive to compare

the bulk viscosity and the shear viscosity in the absence of magnetic field [30] and in the limit of
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zero frequency,
Re ζ(ω→0)

ηs
=

1

µ2τtr,2τ0
≪1 (1.29)

where 1/τtr,2 = 1/τ0 − 1/τ2 denotes the inverse second transport time.

In the case of a weak magnetic field, ωcτ0≪1, the general expression (1.27) can be drasti­

cally simplified. To the first order in the Dingle parameter δ we find

Re ζ(ω) =
ν0
2τ0

[
1− 4δ

sinΩ
ω

(
1− 2π

ωcτ0

tan(Ω/2)
Ω

)
FT cos

2πµ

ωc

]
. (1.30)

Here FT = (2π2T/ωc)/ sinh(2π2T/ωc) and Ω = 2πω/ωc describe the temperature and frequency

dependence of the Shubnikov–de Haas­type oscillations of the bulk viscosity, respectively. The

real part of the bulk viscosity as a function of the frequency and the chemical potential in the

case of a weak magnetic field is shown on Fig. 1.2(c) and (d). We mention that the amplitude of

oscillations of Re ζ(ω) decays with the frequency as∼ ω−1, while at zero frequency the amplitude

of oscillations of Re ζ with the chemical potential is independent of µ. At zero temperature this

amplitude is enhanced by the factor ∼ 1/(ωcτ0) in comparison with oscillations of the density of

states. Therefore, the Shubnikov–de Haas­type oscillations in the bulk viscosity are stronger than

in the longitudinal conductivity [74, 75] and the shear viscosity [42]. Finite temperature suppresses

the amplitude of oscillations of ζ with frequency and the chemical potential, see Fig. 1.2.

Now we consider the case of a strong magnetic field, ωcτ0≫1, in which Landau levels are

well separated. Then in the limit of zero frequency the general result (1.28) can be reduced to the

following expression,

Re ζ(ω→0) =
2

π2l2BΓ
2

[
(µ− ϵN)

2 +
π2T 2

3

]
, (1.31)

for T, |µ− ϵN |≪Γ and

Re ζ(ω→0) =
Γ

3π2l2BT

[
1− 3Γ2 + 5(µ− ϵN)

2

20T 2

]
, (1.32)

for |µ−ϵN |,Γ≪T≪ωc. For large deviation of the chemical potential from the center of the Landau

level, we find the zero­frequency bulk viscosity as

Re ζ(ω→0) =
2e−(µ−ϵN )/T

π2l2B

eΓ/T , T≪µ− ϵN − Γ,

2Γ
3T
, Γ≪T≪µ− ϵN .

(1.33)

The above results are a bit counterintuitive. At T = 0 the real part of the bulk viscosity

vanishes when the chemical potential is at the center of the N ­th Landau level. With deviation of
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Figure 1.2: The real part of the bulk viscosity in the regimes of strong (ωcτ0 = 100, panels (a)
and (b)) and weak (ωcτ0 = 0.8, panels (c) and (d)) magnetic fields at zero (solid curves) and at
finite (dashed curves) temperature. The dependence of Re ζ on frequency is shown on panels (a)
and (c). Thin black dashed line at the panel (a) corresponds to the value of the bulk viscosity at the
ω = kωc for well­separated Landau levels, cf. Eq. (1.37). Panels (b) and (d) show Re ζ(ω → 0)
as a function of the chemical potential for strong and weak magnetic fields. Thin black dashed line
at the panel (b) corresponds to the limiting value of Re ζ(ω → 0) at T = 0 in the strong magnetic
field for µ = ϵN ± Γ, cf. Eq. (1.31).

µ from the center of the Landau level Re ζ(ω → 0) increases and reaches the magnitude 2/(πlB)2

at the boundary of the disorder broadened Landau level. This dependence on chemical potential is

shown on Fig.1.2(b). Such unusual behavior of the real part of the bulk viscosity occurs since it

is proportional to the derivative of the density of states with respect to the energy. At nonzero T a

finite region of energies close to the chemical potential, |ε−µ| ≲ T , contributes to the integral over

energies. Therefore the bulk viscosity increases with rising temperature if µ lies near the center of

the Landau level and decreases if the chemical potential is situated near the band edge.

The maximum value of Re ζ(ω → 0) is the factorN2τ0/τtr,2 smaller than the maximal value

of the shear viscosity and the factor N2 smaller than the maximal value of the Hall viscosity [42].

The result (1.27) suggests that the bulk viscosity oscillates as a function of frequency with

the period ωc. Near harmonics of the cyclotron resonance, |ω − kωc| = |∆ω|≪ωc, k = 1, 2, . . . ,

Eq. (1.27) transforms into the following expression

Re ζ(ω) ≈
∫

dε
fε − fε+kωc+∆ω

kωc

νενε+∆ω

2τ0ν0
. (1.34)

We note that at frequencies ω ≳ ωc one can neglect the terms with the self energy in the right hand

side of Eq. (1.27).

At zero temperature, T = 0, and under assumption that k is much smaller than the number
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of filled Landau levels,N , we obtain that the bulk viscosity near the k­th harmonics of the cyclotron

resonance, k = 1, 2, . . . , is given by

Re ζ(ω) =
ΓΘ

(
2Γ− |∆ω|

)
2π2l2Bωc

[
F1

(
|∆ω|
Γ

)
+
sgn(∆ω)

k
Θ
(
Γ− |µ− ϵN |

)
F2

(
|∆ω|
Γ

,
µ− ϵN

Γ

)]
.

(1.35)

Here Θ(x) stands for the Heaviside theta function and sgn(∆ω) at ∆ω = 0 is equal to zero. The

functions F1,2 are defined as (0 ⩽ x < 2, 0 ⩽ |y| ⩽ 1)

F1(x) =

1−x∫
−1

dt
√
1− t2

√
1− (t+ x)2,

F2(x, y) =

min{y,1−x}∫
max{y−x,−1}

dt
√
1− t2

√
1− (t+ x)2.

(1.36)

We mention that this result suggests that the magnitude of the bulk viscosity at the harmonics of

the cyclotron resonance is independent of the harmonics number k and the chemical potential,

Re ζ(ω = kωc) =
2Γ

3π2l2Bωc

, k = 1, 2, . . . . (1.37)

As one can see, the magnitude of the bulk viscosity at the harmonics of the cyclotron resonance are

the factor Γ/ωc smaller than the maximal value of the bulk viscosity at small frequencies, |ω|≪Γ.

Dependence of Re ζ on frequency ω is shown on Fig. 1.2(a). We note that the bulk viscosity decays

relatively fast with detuning from the cyclotron resonance harmonics.

The effect of nonzero temperature on the bulk viscosity at finite frequency can be described

as follows. Temperature enters the factor (fε−fε+ω)/ω in the final expression for the bulk viscosity,

see Eq. (1.27). Adjustments of this ‘weight’ function are considerable only if ε − µ = O(T ) or

ε + ω − µ = O(T ). Hence, at large frequencies, ω≫T , the change of the ‘weight’ function due

to nonzero temperature is important for a small part of the energy integration region. Therefore,

at ω≫T the temperature does not significantly affect the bulk viscosity. At low but still nonzero

frequencies the temperature effects are more significant.

1.6 Summary

To summarize, in this chapter we have developed the theory of the disorder­averaged bulk viscosity

of the disordered 2D electron gas in the presence of a perpendicular magnetic field within the self­

consistent Born approximation. We demonstrated that the real part of the bulk viscosity has two
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contributions: delta­function peak at zero frequency, see Eq. (1.15), and the smooth part, see Eq.

(1.27). The latter is explicitly computed in the case of weak, see Eq. (1.30) and strong magnetic

fields, see Eq. (1.31). Also we analyzed the harmonics of the cyclotron resonance in the case of

strong magnetic fields, see Eq. (1.37).

The zero field result (1.1) indicates that the method of the kinetic equation is not convenient

for computation of the bulk viscosity. This statement is well enough illustrated by Ref. [50] where

the bulk viscosity in the clean Fermi liquid was derived from the kinetic equation. One more

example is calculations of the bulk viscosity of the clean interacting Fermi gas near the unitary

limit within the kinetic equation approach [55, 56, 65]. However, it is worthwhile to explain for a

reader how the kinetic equation can lead to the bulk viscosity which is proportional to the scattering

rate, 1/τ0 but not to the scattering time (as standard dissipative coefficients, e.g. the dissipative

conductivity, the shear viscosity, etc.). We start from expansion of the left hand side of the kinetic

equation into formal series in 1/τ0. Such an expansion can be symbolically written as L0(n
(0)
q +

δnq)+L1n
(0)
q + . . . . Here n(0)

q denotes the equilibrium distribution function and δnq stands for the

out­of­equilibrium perturbation of the distribution function induced by a bulk flow of the electron

gas. The operatorL0 coincides with the operator in the kinetic equation for the clean noninteracting

electron gas [46]. As a consequence, it vanishes acting on both n
(0)
q and δnq. The operator L1

appears due to renormalization of the electron spectrum by scattering off a random potential, i.e.,

in other words, due to ReΣR
ε . Therefore, the termL1n

(0)
q is proportional to 1/τ0. Since the collision

integral is also proportional to δnq/τ0, we find that the kinetic equation yields δnq ∝ (1/τ0)
0. This

should be contrasted with a standard situation for which δnq ∝ L0n
(0)
q (1/τ0)

−1. Next, the bulk

viscosity can be computed as ζ ∝
∫
d2q Cqδnq [50, 55, 56]. However, the function Cq becomes

nonzero only due the renormalization of the electron spectrum by scattering off a random potential,

i.e. Cq ∝ 1/τ0 (see similar cancellation for clean interacting problem [55, 56]). Again, we remind

that in a standard case Cq is independent of τ0. Combining the estimates for δnq and Cq, we find that
the kinetic equation results in ζ ∝ 1/τ0. We emphasize that an actual computation of L1 and Cq,
especially, in the presence of a magnetic field is muchmore complicated task than the diagrammatic

approach developed in this chapter.

We mention that the viscosity tensor affects the spectrum of bulk and edge magnetoplas­

mons [76]. Our result for the bulk viscosity in a weak magnetic field implies that the contribution

to the magnetoplasmon spectrum due to the bulk viscosity can be neglected for wave vectors q≪kF

in comparison with the contribution due to the shear viscosity.

It is instructive to estimate the magnitude of the bulk viscosity at zero magnetic field for

a typical 2D electron gas in GaAs. In the absence of magnetic field the bulk viscosity at T = 0

is given as ζ = ħ2ν0/2τ0 = e/(4πµu) ≈ 10−18 g/s where we used the value of the mobility

µu ≈ 5 ·104 cm−2/(V · s). For example, one may compare the above value of ζ with shear viscosity
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in the similar system η = ħ2ν0µ2τ/2 = ħ2n2
e/(4ζ) [42], using the electron density ne ≈ 1011 cm2

one may found that η ≈ 10−15 g/s. Subsequently, this value may be compared with the value 10−12

g/s of the shear viscosity of electrons measured in graphene in the hydrodynamic regime [15]. As

one can see, in our regime the magnitude of the bulk viscosity is considerably smaller than the

magnitude of the shear viscosity, which, in turn, is much smaller than typical shear viscosity in

hydrodynamic regime.

It is worthwhile to compare our result for the bulk viscosity due to a random potential

with the result for the bulk viscosity in a clean weakly degenerate interacting Fermi gas. The

interaction contribution to the bulk viscosity decreases with the temperature as a power law, ∝ T 2

(see Ref. [50] for the three­dimensional Fermi liquid). This implies that the contribution to the

bulk viscosity due to disorder dominates at low enough temperatures. Therefore, we expect that

our results provide the lower bound for the residual bulk viscosity in 2D interacting disordered

electron system at low temperatures.

The bulk viscosity can be estimated from measurements in interacting Fermi gases [58, 59,

60]. It is an experimental challenge to extract the bulk viscosity from experiments in 2D electron

systems. There are two main difficulties for possible experimental measurement of the bulk vis­

cosity of 2D electrons that we are aware of. The first issue is that a varying in time deformation

should only be applied to the electronic system while impurities should not be affected. The second

one is to measure experimentally the trace of the stress tensor. The first issue may be resolved as

follows. One possibility is to use a quantum well in a semiconductor heterostructure with a δ–layer

(in which impurities are situated). Then one can apply a time­dependent deformation only to semi­

conductor layers in which 2D electrons are formed. The other possibility is to use 2D electrons in

van der Waals heterostructures with impurities situated in a substrate. Then again one can apply a

slow time­dependent relative deformation δϵ(t) = ϵ sin(2πft) to a layer with 2D electrons only.

To deal with the second problem we propose the following. To study the bulk viscosity one needs

to measure the change in trace of the stress tensor due to an applied time­dependent deformation.

Since the trace of the stress tensor is the internal pressure of the system, one can relate the change

in the stress tensor with the change in the chemical potential at constant temperature, δP = neδµ,

which can be obtained from the Gibbs­–Duhem relation. Then the time­dependent variation of the

chemical potential, δµ(t) = (πfζϵ/ne) cos(2πft) can be measured, e.g. by technique similar to

one reported in Ref. [77]. Using the electron density ne = 1011 cm−2, frequency f = 1MHz, and

deformation ϵ = 10−4, we obtain the amplitude of the change in the chemical potential of the order

of 10−11 K.

Finally, we mention that our techniques can be extended to calculation of the bulk viscosity

in a disordered graphene.
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Chapter 2

BULK VISCOSITY OF A CLEAN

INTERACTING 2D ELECTRON LIQUID

2.1 Introduction and formalism

In this chapter we investigate a clean 2D electron system with Coulomb interaction. Hamiltonian

of the considered system expressed in the formalism of second quantization is as follows

H =
∑
p,σ

p2

2m
c†p,σcp,σ + V, V =

1

2Ld

∑
q,p,p′,σ,σ′

V (q)c†p+q,σc
†
p′−q,σ′cp′,σ′cp,σ, V (q) =

2πe2

q
. (2.1)

Here c†p,σ and cp,σ denotes fermionic creation and annihilation operators a particle with momen­

tum p and spin σ respectively. They obey anticommutation relation {cp′,σ′ , c†p,σ} = δpp′δσσ′ . In

such a system, as it was discussed in the previous chapter, scale invariance is absent. Therefore

bulk viscosity has a finite value. Nevertheless, this viscosity at sufficiently low temperatures is

proportional to electron scattering time (see Sec.1.6) and, therefore, decay to zero with decreasing

temperature.

To study the regular part (excluding delta­functional part) of the bulk viscosity we start with

the Kubo­formula that was described in the Sec. 1.2.

Re ζ(ω ≠ 0) = − 1

4ωLd
Re

∞∫
0

dteiω+t ⟨[Tαα(t), Tαα(0)]⟩ , (2.2)

where Ld is a system volume. Now, unlike in the disordered but non­interacting case, the form of

the stress tensor Tαβ is different from its form of in an ideal system. In interacting system the stress

tensor has a non zero contribution that comes from V (q) [78]

Tαβ =
∑
p,σ

pαpβ
m

c†p,σcp,σ +
1

2Ld

∑
q,p,p′,σ,σ′

[
δαβV (q) +

qαqβ
q

V ′(q)

]
c†p+q,σc

†
p′−q,σ′cp′,σ′cp,σ

=
∑
p,σ

pαpβ
m

c†p,σcp,σ +
1

2Ld

∑
q,p,p′,σ,σ′

[
δαβ

2πe2

q
− qαqβ

q

2πe2

q2

]
c†p+q,σc

†
p′−q,σ′cp′,σ′cp,σ. (2.3)
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One can check in two dimensions the trace of the stress tensor simplifies to Tαα = 2H − V .

Substituting this expression to the Eq. (2.2) we find

Re ζ(ω ̸= 0) = − 1

4ωA
Re

∞∫
0

dteiω+t ⟨[V (t), V (0)]⟩ . (2.4)

Here A ≡ Ld is the area of two­dimensional system. The structure of Eq.(2.4) resembles the

structure of the Kubo formula for the clean Fermi gas with interactions in contact form (see Ref.[65]

and references therein). In our case a Coulomb potential plays a role of the contact operator.

2.2 The first order in perturbation theory

Further we will work using Matsubara technique [79]. We perform transformation from real to

imaginary time t → −iτ

ζ(iωn) =
1

4ωA
i

β∫
0

dτeiωnτ ⟨Tτ [V (τ), V (0)]⟩ = 1

4ωA
Z(iωn), (2.5)

where Re ζ(ω) = Re ζ(iωn → ω + i0), ωn = 2πn
β
.

We assume that our system has high density of electrons in the terms of the parameter

rs =
√

1
πnea20

= 2e2

vF
, rs ≪ 1, where a0 is a Bohr radius and vF is a Fermi velocity. In such a

system electron­electron interaction part of the Hamiltonian V may be considered as perturbation

[79]. In this section we compute Re ζ in the first order of the perturbation theory, which is obtained

if we replace the averaging in the correlator in Eq. (2.5) over the states of the full system with

averaging over the states of the unperturbed system Re ζ(0)(ω) = Z(0)(ω + i0).

Z(0)(iωn) =

(
2πe2

2A

)2

Re i
β∫

0

dτeiωnτ

×
∑

q ̸=0,p,p′,σ,σ′

q′ ̸=0,k,k′,ρ,ρ′

1

qq′

⟨
ĉ†p+q,σ(τ)ĉ

†
p′−q,σ′(τ)ĉp′,σ′(τ)ĉp,σ(τ)ĉ

†
k+q′,σ(0)ĉ

†
k′−q′,ρ′(0)ĉk′,ρ′(0)ĉk,ρ(0)

⟩
connected

(2.6)

As one can check when we decompose Eq. (2.6) using Wick’s theorem there are eight possible

combinations of pair correlators of annihilation and creation operators. They may be separated

in two groups with four combinations. The first group contains pair correlators at the coinciding

time, diagrams that correspond to them are presented at the Fig.2.1. The second group has only

correlators with different, it is illustrated at the Fig.2.2.
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Figure 2.1: Diagrams corresponding to the Kubo formula of the bulk viscosity in the first non­
zero order and have pair correlators at the coinciding time. Bold solid lines denote pair correlation
function of electron, while curl lines denote electron­electron interaction

Figure 2.2: Diagrams corresponding to the Kubo formula of the bulk viscosity in the first non­zero
order and do not have pair correlators at the coinciding time. Bold solid lines denote pair correlation
function of electron, while curl lines denote electron­electron interaction
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As one can check all four diagrams in Fig.2.1 give the same contribution

Z0(iωn) = 4

(
2πe2

2A

)2

Re i
β∫

0

dτeiωn
∑

q ̸=0,q′ ̸=0,p,σ

(−1)

qq′
np−qnp−q′Gp(τ)Gp(−τ)

= −8

(
2πe2

2A

)2

Re i
β∫

0

eiωndτ
∑

q ̸=0,q′ ̸=0,p

1

qq′
np−qnp−q′np (1− np) , (2.7)

where Gp(τ)Gp(−τ) = −np (1− np) relation was used. Since np−qnp−q′np (1− np) does not

depend on τ , an integral over τ in Eq. (2.7) is zero when ωn ̸= 0. When ωn = 0 the integral is

purely real, and therefore Z0(iωn) ≡ 0 and does not contribute to the real part of the bulk viscosity.

Let’s now consider for diagrams from Fig.2.2 separately. As one can check Zb(iωn) =

Zd(iωn) = Z2(iωn), Za(iωn) = Zc(iωn) = Z2(iωn)

Z1(iωn) =

(
2πe2

2A

)2

Re i
β∫

0

dτeiωn
∑

q,q′,p,σ

(−1)

qq′
Gp(τ)Gp−q(−τ)Gp−q−q′(τ)Gp−q′(−τ), (2.8)

Z2(iωn) =

(
2πe2

2A

)2

Re i
β∫

0

dτeiωn
∑

q,p,k,σ,σ′

1

q2
Gp(τ)Gp−q(−τ)Gk(−τ)Gk−q(τ). (2.9)

PerformingMatsubara frequency summation and summation over spin indices, then chang­

ing ωn → ω + i0 and taking the real part (see App.(A.2)) we obtain :

Z1(ω) = −2
∑
q,q′,p

δ(ω − ξp + ξp−q + ξp−q′ − ξp−q′−q)

qq′
[nF (ξp)− nF (ξp − ω)]

× [nF (ξp−q) + nB(ξp−q−q′ − ξp−q′)] [nF (ξp−q′)− nF (ξp−q′−q′)] (2.10)

Z2(ω) = 4
∑
q,p,k

δ(ω − ξp + ξp−q + ξk − ξk−q)

q2
[nF (ξp)− nF (ξp − ω)]

× [nF (ξp−q) + nB(ξk−q − ξk)] [nF (ξk)− nF (ξk−q)] (2.11)

As one can see from this expressions the main contribution to Z1 and Z2 from the summation over

momentum comes from the area where k,p are near to the Fermi surface and |q|, |q′| ≪ kF , where

kF is a Fermi momentum. Using this assumption and performing integration over p and k in the

linear spectra approximation ξp = vF (p− kF ) and ξk = vF (k − kF ), we obtain (see App.(A.3) )

Z1(ω) ≈ ν0
∑

q,q′,p/p

δ(ω − vF qq′
kF

)

qq′
sinh(βω/2)

vFqp/p coth
(
β
2
vFqp/p

)
− vFq′p/p coth

(
β
2
vFq′p/p

)
sinh

(
β
2
vF (q− q′)p/p

)
sinh

(
β
2
[vF (q+ q′)p/p]

) ,

(2.12)
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Z2(ω) ≈ −2ν2
0

∑
q,p/p,k/p

δ(ω − vFq(p/p− k/k))
q2

sinh(βω/2)
vFqp/p

sinh(βvFqp/(2p))
vFqk/k

sinh(βvFqk/(2k))
,

(2.13)

where ν0 is the density of states at Fermi level.

2.3 Summary

To sum up in this chapter we derived an analytical expression in integral form for the bulk viscosity

in the systemwith Coulomb interaction in the first order in perturbation theory. As one can see these

expression is divergent at small q, q′. To deal with that problem we following: one may insert loop

diagrams considered in the random phase approximation (RPA) into the curl lines at Fig.2.2 and

this will results in the vertices regularisation 1
q
→ 1

q+kTF
, where kTF is a Tomas­Fermi vector. This

procedure will make integrating by q, q′ convergent and results in finite value for the bulk viscosity.

Moreover, if this insertion of the PRA diagrams change only the 1
qq′

and 1
q2
factors in the Eq.(2.12)

and Eq.(2.13) then these equations will reproduce expected temperature dependence ζ ∝ 1
τee

∝ T 2

(see Sec.1.6) at small temperatures. This assumption will be investigated in our further work.
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CONCLUSION

To make conclusion in this thesis we investigated bulk viscosity of a two­dimensional electronic

system. Separately was studied two cases of non­interacting disordered system in external mag­

netic field and clean system with Coulomb interaction. Analytical expressions for two these cases

were obtained. When magnetic field is weak, contribution to the bulk viscosity from disorder is

proportional to the frequency of electron­impurity collisions and stays finite at zero temperature. In

contrast, contribution that arise from electron­electron interaction decays to zero with decreasing

temperature.

We plan to continue further investigation of the viscosity in the disordered and interact­

ing electron system, develop results obtained in the second chapter and then study a generalized

problem of the system that has both disorder and electron­electron interaction.
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Appendix A

DETAILED MATHEMATICAL

DERIVATIONS

A.1 Ladder contribution to the bulk viscosity

Here we present a brief derivation of Eq. (1.25). Diagrams corresponding to ζ(c) are shown in Fig.

1.1(c). We find

Re ζ(c) =
1

πA

∫
dε

fε − fε+ω

ω

[
X(1)

ε,ω +X(2)
ε,ω +X(3)

ε,ω +X(4)
ε,ω

]
, (A.1)

HereX(1) stands for the diagram in the upper left panel in Fig. 1.1c,X(2) for the upper right panel,

X(3) for the bottom left panel and X(4) for the bottom right panel, respectively. Each of the four

diagramXi consists of three blocks: two self­energies at the vertices and the diffuson ladder in the

middle. This ladder represents an infinite sum of diagrams with the Green’s functions at the top and

bottom, and arbitrary number of vertical dashed scattering lines. For computation of such diagrams

it is convenient to rewrite TrV ImGR
ε+ωV ImGR

ε as −(1/4)TrV (GR
ε+ω −GA

ε+ω)V (GR
ε −GA

ε ).

After such transformation each contributionX(i) has four different terms with particular combina­

tion of the Green’s functions. For the first contribution we obtain

X(1)
ε,ω = −πν0A

2
ΣR

ε Σ
R
ε+ωΠ

RR
0 (ω)

∞∑
n=0

(
ΠRR

0 (ω)

τ0

)n

− πν0A
2

ΣA
ε Σ

A
ε+ωΠ

AA
0 (ω)

∞∑
n=0

(
ΠAA

0 (ω)

τ0

)n

+
πν0A
2

ΣR
ε Σ

A
ε+ωΠ

RA
0 (ω)

∞∑
n=0

(
ΠRA

0 (ω)

τ0

)n

+
πν0A
2

ΣA
ε Σ

R
ε+ωΠ

AR
0 (ω)

∞∑
n=0

(
ΠAR

0 (ω)

τ0

)n

= −πν0A
2

[
ΣR

ε Σ
R
ε+ωΠ

RR
0 (ω)

1− ΠRR
0 (ω)/τ0

+
ΣA

ε Σ
A
ε+ωΠ

AA
0 (ω)

1− ΠAA
0 (ω)/τ0

−
ΣR

ε Σ
A
ε+ωΠ

RA
0 (ω)

1− ΠRA
0 (ω)/τ0

−
ΣA

ε Σ
R
ε+ωΠ

AR
0 (ω)

1− ΠAR
0 (ω)/τ0

]
.

(A.2)
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As one can check, X(2)
ε,ω = X

(1)
ε,ω. Next, in a similar way, we find

X(3)
ε,ω = −πν0A

2

[ (
ΣR

ε

)2
ΠRR

0 (ω)

1− ΠRR
0 (ω)/τ0

+

(
ΣA

ε

)2
ΠAA

0 (ω)

1− ΠAA
0 (ω)/τ0

−
(
ΣR

ε

)2
ΠRA

0 (ω)

1− ΠRA
0 (ω)/τ0

−
(
ΣA

ε

)2
ΠAR

0 (ω)

1− ΠAR
0 (ω)/τ0

]
,

(A.3)

X(4)
ε,ω = −πν0A

2

[(
ΣR

ε+ω

)2
ΠRR

0 (ω)

1− ΠRR
0 (ω)/τ0

+

(
ΣA

ε+ω

)2
ΠAA

0 (ω)

1− ΠAA
0 (ω)/τ0

−
(
ΣA

ε+ω

)2
ΠRA

0 (ω)

1− ΠRA
0 (ω)/τ0

−
(
ΣR

ε+ω

)2
ΠAR

0 (ω)

1− ΠAR
0 (ω)/τ0

]
.

(A.4)

Combining these four contributions together, one can derive Eq. (1.25).

A.2 Frequency summation

Here we present brief derivation of Eqs.(2.10,2.11) from Eqs.(2.8, 2.9). Firstly, we express every

Green function as Fourier series Gp(τ) =
∑
m

Gp(iωm)e
iωmτ with summation over ωm = π(2m+1)

β

frequencies, then performing integration over τ one may obtain

Z1(iωn) = − 2

β3

(
2πe2

2A

)2

Re i
∑
q,q′,p

1

qq′

∑
m,k,s

Gp(iωm)Gp−q(iωk)Gp−q′(iωs)Gp−q−q′(iωn+k+s−m),

(A.5)

Z2(iωn) =
4

β3

(
2πe2

2A

)2

Re i
∑
q,p,k

1

q2

∑
m,k,s

Gp(iωk)Gp−q(iωs)Gk(iωk)Gk−q(iωn+k+s−m). (A.6)

Then onemay perform summation overMatsubara frequenciesωm, ωk, ωs one by one using contour

integration [79]

Z1(iωn) = − 2

β2

(
2πe2

2A

)2

Re i
∑
q,q′,p

1

qq′

∑
m,k

Gp(iωm)Gp−q(iωk)
nF (ξp−q′)− nF (ξp−q′−q′)

iωn+k−m + ξp−q′ − ξp−q′−q′

= − 2

β

(
2πe2

2A

)2

Re i
∑
q,q′,p

1

qq′

∑
m,k

Gp(iωm) (nF (ξp−q) + nB(ξp−q−q′ − ξp−q′))

× nF (ξp−q′)− nF (ξp−q′−q′)

iωn−m + ξp−q + ξp−q′ − ξp−q′−q′

= −2

(
2πe2

2A

)2

Re i
∑
q,q′,p

1

qq′
[nF (ξp)− nF (ξp−q + ξp−q′ − ξp−q−q′)]

iωn − ξp + ξp−q + ξp−q′ − ξp−q′−q

× [nF (ξp−q) + nB(ξp−q−q′ − ξp−q′)] [nF (ξp−q′)− nF (ξp−q′−q′)] .

(A.7)
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In a similar way we get

Z2(iωn) = 4

(
2πe2

2A

)2

Re i
∑
q,p,k

1

q2
[nF (ξp)− nF (ξp−q + ξk − ξk−q)]

iωn − ξp + ξp−q + ξk − ξk−q

× [nF (ξp−q) + nB(ξk−q − ξk)] [nF (ξk)− nF (ξk−q)] . (A.8)

Then we perform analytical continuation ωn → ω + i0 and take the real part of the denominator

using Re i
ξp+ω+i0

= πδ(ω + ξp) relation

Z1(ω) = −2

(
2πe2

2A

)2 ∑
q,q′,p

δ(ω − ξp + ξp−q + ξp−q′ − ξp−q′−q)

qq′
[nF (ξp)− nF (ξp − ω)]

× [nF (ξp−q) + nB(ξp−q−q′ − ξp−q′)] [nF (ξp−q′)− nF (ξp−q′−q′)] , (A.9)

Z2(iωn) = 4

(
2πe2

2A

)2 ∑
q,p,k

δ(ω − ξp + ξp−q + ξk − ξk−q)

q2
[nF (ξp)− nF (ξp − ω)]

iωn − ξp + ξp−q + ξk − ξk−q

× [nF (ξp−q) + nB(ξk−q − ξk)] [nF (ξk)− nF (ξk−q)] . (A.10)

A.3 Integral calculation

In this section we present brief derivation of Eqs.(2.12, 2.13) from Eqs.(2.10,2.11). Firstly, we ex­

pand energy of the quasiparticles near the Fermi surface assuming that |k − kF |/kF , |p− kF |/kF ≪
1 and |q|/kF , |q′|/kF ≪ 1:

ξp−q = ξp − vFqp/p. (A.11)

Using this expansion one may obtain:

Z1(ω) ≈
(
2πe2

2A

)2 ∑
q,q′,p

δ(ω − vF qq′
kF

)

qq′
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β
2
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β
2
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)
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(
β
2
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β
2
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) , (A.12)

Z2(ω) ≈ −
(
2πe2

2A
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sech(βξk/2) sech(βξp/2) sinh(βω/2)
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(
β ξp−vF qp/p

2
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cosh

(
β ξk−vF qk/k

2

) .
(A.13)

28



Next, one may perform summation over p,k as
∑
p
→

∑
p/p

ν0
∫
dξ

∫
dξp sech(βξp/2) sech(β [ξp − vFqp/p] /2) =

2vFqp/p
sinh(βvFqp/(2p))

. (A.14)

After that one get

Z2(ω) ≈ −2ν2
0
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(A.15)
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(A.16)

where in the last line ω = vF qq′
kF

≪ vF qp
p

relation was used.
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