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Abstract

A nonzero bulk viscosity indicates a violation of scale invariance. It is shown that disorder and
electron-electron interactions in a two- d1mens10na1 electron system in a peﬁendlcular magnetic
field lead to a nonzero average bulk viscosity, . Anr analytlcal expres-
Slos‘t]esnillr&eobtamed for the bulk viscosity in tw ases for clear inter. tlng electron liquid and dis-
ordered non-interacting electron 5. In the fistcase bulk viscosity de@ay to zero with decreasing
temperature while in the second this residual bulk viscosity stays finite and gives a lower boundary

for the bulk viscosity of 2D electron liquid at low enough temperatures.
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INTRODUCTION

Hydrodynamic description of a viscous electron flow has a long history [1]. The progress in this
field was detained by a lack of experiments (see, however, Ref. [2]). After experimental realization
of graphene there was a revival in theoretical [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] and experimental
[14,15,16,17,18, 19,20, 21, 22, 23, 24] research on the hydrodynamic description of an electron
transport in the two spatial dimensions. Viscosity enters equations of hydrodynamic motion of the
liquid as a principle kinematic coefficient.

In the presence of the rotational symmetry the viscosity tensor of a two dimensional system

can be parametrized by three parameters only,

Nik,ls = (C - 775)5jk5zs + Ns (5jl5ks + 5js5kz)
+ (N /2) (6j15ks + €50k + €110 + Eks5jl). (1)

Here ( stands for the bulk viscosity. The shear viscosity is denoted as 1. The second line of Eq.
(1) appears if the time reversal symmetry is broken, e.g. by a perpendicular magnetic field B.
Similarly to the Hall conductivity, the Hall viscosity, 775, describes the non—dissipative part of the
viscosity tensor. The existence of the Hall viscosity has been well appreciated long time ago in the
field of high temperature magnetized plasma [25, 26, 27, 28, 29].

In electron systems microscopic calculation of the viscosity tensor has been traditionally
performed for the shear and Hall components only [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
43,44, 45]. The latter attracted much interest due to its relation to the geometrical response [31, 32,
33, 34, 35, 36, 37] and quantization for translationally and rotationally invariant gapped quantum
systems [35].

In this thesis bulk viscosity ( is theoretically investigated for a two-dimensional electronic
system. Two cases is aimed to study separately: a non-interacting electron gas with disorder and
a clean interacting electron liquid. Various calculation techniques have been implemented for this

study, including the diagrammatic technique, the self-consistent Born approximation and others.



Chapter 1

BULK VISCOSITY OF A
NON-INTERACTING DISORDERED
2D ELECTRON GAS

1.1 Introduction

Although it is frequently said that viscosity exists only in a context of hydrodynamics, in fact, it has
implication on its own: as a linear response that characterizes a change of the stress tensor under a
time—dependent deformations [38].

It is well-known that for a monoatomic gas the Boltzmann kinetic equation predicts zero
value for the bulk viscosity [46, 47]. Zero bulk viscosity implies that the system is scale invariant
and can expand isotropically without dissipation. One more example of such a system is the unitary
Fermi gas [48]. However, generically, interaction breaks scale invariance and results in nonzero
bulk viscosity. The canonical example is the Fermi liquid with nonzero albeit small bulk viscos-
ity [49, 50]. Recently, breaking of scale invariance has been extensively studied in the context
of strongly interacting Fermi gas, both theoretically [51, 52, 53, 54, 55, 56, 57] and experimen-
tally [58, 59, 60], as well as in the quantum chromodynamics [61, 62, 63, 64].

Typically, a condensed matter electron system contains a quenched disorder. A presence of
a random potential in the Hamiltonian inevitably breaks the scale invariance. Therefore, one may
expect a nonzero value of the bulk viscosity even in the absence of electron-electron interactions.

To unravel this issue, we consider a two-dimensional (2D) noninteracting electron gas in
the presence of a perpendicular static magnetic field and a random potential. Based on the Kubo
formula for the bulk viscosity we demonstrate explicitly how a nonzero magnitude of the disorder—
averaged bulk viscosity appears due to the presence of a random potential in the Hamiltonian. We
find that the real part of the bulk viscosity as a function of frequency contains two contributions:
(1) a delta-function peak with the weight which is determined by such thermodynamic quantities
as pressure and isentropic compressibility; and (i1) a smooth part depending on the total elastic

scattering time 7y. Within the self-consistent Born approximation (SCBA) we derive expression



for the smooth contribution to the real part of the bulk viscosity at a finite frequency. In the absence
of the magnetic field it acquires a remarkably simple form for all frequencies, w, and temperatures,

T, much smaller than the chemical potential, 1,
Re((w) = Pvo/(2m),  Alw], keT<p. (L.1)

Here 1 denotes the density of states at the Fermi level. We emphasize that Re {(w) is proportional
to the elastic scattering rate in contrast to the shear viscosity which, as other standard transport
quantities, is proportional to the elastic scattering time. The result (1.1) indicates that in order to
derive nonzero bulk viscosity within the kinetic equation approach one needs to take into account
higher order corrections due to impurity scattering.

Throughout the thesis we use the units in which 7 = kg = c = 1.

1.2 Formalism

A 2D electron gas in the presence of an external static perpendicular magnetic field B and a random

potential V' (r) is described by the following Hamiltonian,
H = (—iV — eA)?/(2m,) + V(x). (1.2)

Here m, denotes the electron mass. The vector potential A(r) corresponds to the static magnetic
field B, V x A = Be,. We shall work in the Landau gauge: A, = Brand A, = A, = 0. We
assume the Gaussian distribution for a random potential with zero mean and characterized by the
pair correlation function V' (r)V (r') = W(|r — ¥/|). The function W (r) is assumed to decay at
a typical length scale dy,. The magnetic field B is assumed to be strong enough to polarize the
electron spins.

In the microscopic theory the disorder-averaged viscosity tensor can be computed from the
Kubo formula (see Egs. (3.4), (3.11), and (3.14) of Ref. [38]):

5‘k5ls — d€f5 dedS fs - fs+Q
njk,ls(w):;w—+(:‘€ 1—P)—/7TAM+Tr[Tjk,JZS] Ime/ Y Z_EQ_w+>w)+Tr7}kIme+QﬂsIme.

(1.3)

Here P stands for the internal pressure of the electron gas, x~! denotes the inverse isentropic com-
pressibility at constant particle number, A is the system area, and w™ = w + i0. The retarded
Green’s function is defined in a standard way, G® = 1/(c — H +i0); f. = 1/[1+exp((e — p)/T)]
denotes the Fermi distribution function with the chemical potential iz and temperature 7". The stress

tensor operator 1, = m.(v;v, + vgyv;)/2 is not affected by the presence of a random potential.



Here v = (—iV — eA)/m, is the velocity operator [38, 42]. The strain generator operator .J;;
is related with the stress tensor operator as 7}, = —i[H, Jj;|. We note that contrary to the stress
tensor operator, the expression for .J;;, is sensitive to the presence of a random potential. Disorder
averaging in Eq.(1.3) is denoted by an overbar.

Bulk viscosity ¢ can be derived from the viscosity tensor by tracing the spatial indices,

¢ = nj;ju/d*, where d = 2 is the spatial dimension. Using Eq.(1.3), we find

((w) = Tr T Im GE T5 Im GE, (1.4)

P X /dsdQ — fe10)
wd QAZQ wh)wt

where Ty, = Tj; and the frequency independent quantity X is defined as

[ defe
X = Z/WTY[TE,JE] Ime (15)

Here we introduce Jy, = J;;. Using the relation 7y, = 2(H — V'), we can rewrite Eq. (1.4) as

follows

K1—P—X dedQ  (f- — ferq) = -
((w) —Z.w—+—|—4/(Wd>2AZ,(Q_w+)w+TrVImG€+QVImGE. (1.6)

It is worthwhile to emphasize that the last term in the right hand side of the above expression
represents the many-body two-point correlation function of a random potential. Thus the structure
of Eq. (1.6) resembles the structure of the Kubo formula for the interacting clean Fermi gas (see
Ref. [65] and references therein). In our case a random potential plays a role of the contact operator
[66, 67, 68].

The expression (1.6) suggests the following sum rule for the disorder averaged bulk viscos-
ity, .

/d%C(W):P_'_X_FJl. (1.7)

This expression is analogous to the sum rule found for the interacting clean Fermi gas [51, 65].

Using Eq. (1.6), we obtain the following Kubo formula for the real part of the bulk viscosity,

4 de fg fe—l—w

Re((w) =2 A = =T VImGE VImGE + 7D (w), (1.8)

where the weight of the delta-function peak at w = 0 is given as

D=P+X - Rei dedSt . -

fe—i—Q
1 00 TVImGEVImGE (1.9)

We emphasize that the appearance of a random potential V' as vertices in Eq. (1.8) reflects the fact



that the bulk viscosity vanishes in the clean case.

1.3 The weight of the zero frequency delta-function peak

The expression for the weight (1.9) involves the internal pressure which is proportional to the
average value of the trace of the stress tensor, P = (T%)/(d.A). We note that the presence of a
random potential affects the standard relation for a Fermi gas between the internal pressure and the

energy,

P=(Tv)/(dA) = —/é—gAfETrTg ImGE = 35+§ :TilngrVIme, (1.10)

where we used the relation T, = 2(H — V). Here £ = [ dev(e)ef. denotes the energy density
where v(¢) stands for the disorder-averaged density of states. We mention that the relation (1.10)
is analogous to the Tan’s relation for the pressure of an interacting Fermi gas [68]. In our case the
random potential plays a role of the contact operator.

Next, using the relation [Tx, Jx| = 2iTx !, we obtain

X =P 1.11
: (1.1)

Interestingly, this relation is not affected by the presence of a random potential.

Using Eq. (1.11), we rewrite the expression (1.9) for the weight as

2+d _ fE, — fE 2
D=— e by|“. 1.12
. E#bj (alVID) (112)

Here E, and |a) denote the exact eigen energies and eigen states for the Hamiltonian H, H|a) =
E.|a). We note that the above expression for the weight D explicitly involves a random potential.

With the help of Eq. (1.11) the sum rule (1.7) can be rewritten as

/ d—”g(w) = 2ﬂlp — kL (1.13)

We note that the right hand side of Eq.(1.13) is purely real and depends on the thermodynamic
quantities only .

In the absence of the magnetic field and disorder, the inverse isentropic compressibility is

I'This result can be derived from the expansion of the relation e =2 (H — V) +V = e~ /= He'A= to the second
order in A. See Ref. [38] for more details.

10



defined as k' = —A(@P/@A)SA’%A,

respectively. Using the thermodynamic relation T's = £ + P — un. we find that a variation of the

where s and n. denote the entropy and electron densities,

area 0.4 under conditions s.A = const and n..4 = const results in the following variation of the
energy density, 0 = —(€ + P)J.A/A. Also, a variation of the area leads to the variation of the
electron density, on. = —n.0.4/.A. Hence, we obtain [65]

_ oP oP
K 1:(5+P) (%)HE—FHG <a—ne)g. (114)

We note that £~ is related with the sound velocity, ¢, = 1/ \/Emene. In the absence of the disorder,
V' = 0, and the magnetic field, B = 0, the energy density and the pressure of the ideal Fermi gas
are related as P = 2£/d [69]. This relation implies that the pressure is fixed if the energy density
is fixed, i.e (OP/On.)e = 0. Then, from Eq. (1.14), we find k= = (d + 2)P/d. As a result,
we obtain that the weight of the delta-function peak is zero, D = 0. Therefore, Eq. (1.6) implies
that the bulk viscosity vanishes identically, ((w) = 0, for the ideal Fermi gas in agreement with its
scale invariance.

For clean 2D electron gas in presence of magnetic field Eq. (1.12) simplifies to
D=2P— ks " (1.15)

In that case internal pressure differs from ordinary thermodynamic pressure on the contribu-
tion associated with the action of the Lorentz force on the edge current and expressed as P =
—(0(EA)/0A)san.ap —mB = —(0(EA)/OA)san.. 84, where m stands for the magnetization
density [70]. Isentropic compressibility x~! = —A(@P / 8.A) A ABA is defined at the constant
particle number and the magnetic flux.

Using the thermodynamic relation T's = £ + P + mB — un,., we find that a variation of
the area 0.4 under conditions s.A = const, n..A = const, and BA = const results in the following
variation of the energy density, 6 = —(€ + P)d.A/A. Also, a variation of the area yields the

variations of the electron density, 0n, = —n.0.A/A and the magnetic field, 0B = —BJ.A/A.

oP oP oP
_1_ - =
coeen(Ge), o), G, o

Again, in the absence of a random potential, the weight of the delta-function peak vanishes. It is

Hence, we obtain

easy to check this statement at zero temperature. Then for N filled Landau levels we find P =

E =mw?N?/(4m) and k! = 2€. Hence Eq. (1.15) leads to D = 0.

11



1.4 Self-consistent Born approximation

In order to take into account a random potential we employ the self-consistent Born approxima-

tion [71]. This approximation is justified under the following conditions [72, 73, 74],
1/]€F,dw<<l3, dw<<UFTO. (117)

Here [z = 1/v/eB stands for the magnetic length and kr = m.vp stands for the Fermi momentum
with the Fermi velocity denoted as vr. The total elastic relaxation time, 79, in the absence of the

magnetic field is defined by the following relation

o

p =1 / %W(ka sin(gb/Q)) cos(ng), n=10,1,2,... (1.18)
0

Here 1 (g) stands for the Fourier transform of T (). We note that the condition kplp>>1 is equiv-

alent to the condition N>>1 where NV is the number of filled Landau levels.

Within the SCBA the physical quantities of interest are usually fully expressed in terms of
the disorder averaged retarded Green’s function GZ. It satisfies the self-consistency equation, see
Fig. 1.1(a),

G = (e —en— X1, EF = 3 gR (1.19)

21T
n

where €, = w.(n + 1/2) denotes the energy of the n-th Landau level (LL) and ©7 stands for the
disorder averaged self energy. Here w, = eB/m, is the cyclotron frequency. The self-consistency
relation (1.19) can be solved analytically for $3% in two limiting cases [71]. In the regime of a weak
magnetic field, w.79<1, when LLs overlap, one can perform summation over LL index n with the
help of the Poisson formula and find [71]

i

rR_ _ ° . 2mie /we
5= o (1 —20e ), (1.20)

where § = exp(—m/w.7y)<1 is the Dingle parameter. In the opposite case of well separated LLs,
w.Tp>>1, one can restrict the summation over LL index n in Eq. (1.19) to n = N only, where €y is

the closest LL energy to the energy of interest: |¢ — ex| < w./2. Then one obtains [71]

1

mR = <5—6N—i\/F2—(5—eN)2>. (1.21)

Here the LL broadening is controlled by the energy scale I' = /2w, /(7). The disorder—averaged

12



Figure 1.1: Diagrams used in SCBA. (a) The self-energy diagram; (b) and (c) Diagrams corre-
sponding to the bulk viscosity within SCBA. Bold solid lines denote the disorder averaged Green’s
function G., dashed lines stand for the pair correlation function W (r).

density of states can be expressed in terms of the disorder—averaged Green’s function as
1 R R
v, = _M;Imgn () = =271 Im BF, (1.22)
Using Eqgs. (1.20) and (1.21), we find the disorder—averaged density of states [71]

1 — 26 cos(2me /w,.), weTpK1,
v, = 1 (1.23)

10> Re\/T? — (¢ — €,)2, weTo>>1.

1.5 Bulk viscosity within SCBA

The bulk viscosity at nonzero frequency, w # 0, is given by the first term in the right hand side of
Eq. (1.8). We assume that frequency and temperature are much smaller than the chemical potential,
|w|, T<p. Under this assumption, the integral over energy ¢ is dominated by the vicinity of the
chemical potential. The unusual feature of the Kubo formula for the real part of the bulk viscosity,
Eq. (1.8), is that vertex is a random potential. The diagrams contributing to Re {(w) within SCBA
are shown in Fig. 1.1(b) and (c).

We start from computation of the diagram of Fig. 1.1(b). Using Eq. (1.19), we can rewrite

13



this contribution as

Re C(b) - / ijfe wfe+w 27312 Z Im gR Im Ef+w _ /dsfs —wfs+w VQETV;:: (1.24)
We note that the contribution to Re ¢ from the diagram of Fig. 1.1(b) can be expressed solely in
terms of the density of states, ., computed within SCBA.

In addition to the diagram in Fig. 1.1(b) within SCBA one needs to take into account a set
of diagrams shown in Fig. 1.1(c). They correspond to the impurity ladder insertion and describe
vertex renormalization. As we shall see below, in spite of the scalar nature of the vertex (a random
potential), the diagrams of Fig. 1.1(c) provide a significant contribution to the real part of the bulk
viscosity in the case of a strong magnetic field. Evaluation of the four diagrams in Fig. 1.1(c) yields

(see App.A.1)

= frw ZR + ) HRA ER D) HRR
Re () = gele = e pe ( 6;;) ofw) (B 6;;) o) (1.25)
w 1 — I (w) /7o 1 — I (w) /7o
Here the polarization operator,
¥4 - 3E
84 (w) = “C ZQR (e +w)Gi(e) = ol <) (1.26)

w+ Z? E?—‘rw ’

provides the contribution to the “bubble” without the impurity ladder insertion. The expression for
152 (w) can be obtained from Eq. (1.26) by changing superscript A to 2. Combining contributions
(1.24) and (1.25), we find the following expression for the disorder—averaged bulk viscosity of a

2D electron gas,

RGC / Je— fs—i—w Veletw Re 1 - Zf—i-w - 25 _ V52+w _ (Zf+w + Ef) . (1.27)
Tolo 2 w WlVelVeyy

We emphasize that the above expression involves not only the density of states, ., com-
puted within SCBA but also the real part of the SCBA self energy. In the limit of zero frequency

the expression (1.27) becomes

de
27'0 y

O- (V2 ReXF) }

Re ((w—0) = / (= )12 [1 e (1.28)

In the absence of a magnetic field the density of states and self-energies are independent of energy.
Therefore, Eq. (1.27) transforms into remarkably simple result (1.1). It is instructive to compare

the bulk viscosity and the shear viscosity in the absence of magnetic field [30] and in the limit of

14



zero frequency,
Re ((w—0 1
Al ) =— <1 (1.29)
Ns KT 2T0

where 1/7,2 = 1/79 — 1/7 denotes the inverse second transport time.
In the case of a weak magnetic field, w.7p<1, the general expression (1.27) can be drasti-

cally simplified. To the first order in the Dingle parameter 6 we find

Re((w) = o2 [1 SPPLLLL (1 _ 2 M) Frcos 2“‘]. (1.30)

T0 W WeTo Q c

Here Fr = (2727 /w,)/ sinh(27%T Jw,) and Q = 27w /w, describe the temperature and frequency
dependence of the Shubnikov—de Haas-type oscillations of the bulk viscosity, respectively. The
real part of the bulk viscosity as a function of the frequency and the chemical potential in the
case of a weak magnetic field is shown on Fig. 1.2(c) and (d). We mention that the amplitude of
oscillations of Re ¢ (w) decays with the frequency as ~ w™?, while at zero frequency the amplitude
of oscillations of Re ¢ with the chemical potential is independent of i. At zero temperature this
amplitude is enhanced by the factor ~ 1/(w.7) in comparison with oscillations of the density of
states. Therefore, the Shubnikov—de Haas-type oscillations in the bulk viscosity are stronger than
in the longitudinal conductivity [74, 75] and the shear viscosity [42]. Finite temperature suppresses
the amplitude of oscillations of ¢ with frequency and the chemical potential, see Fig. 1.2.

Now we consider the case of a strong magnetic field, w.79>>1, in which Landau levels are
well separated. Then in the limit of zero frequency the general result (1.28) can be reduced to the

following expression,

2 w2T?
R 0) = —5— 2 1.31
€ 0(w) = g = e+ . (131
for T, | — en|<I" and
r 3F2+5(/L—€N)2
R 0)=—= 11— 1.32
w200 = 35nT { 207 ’ (1.32)

for |u—en|, T <w,. For large deviation of the chemical potential from the center of the Landau

level, we find the zero-frequency bulk viscosity as

2e—(=ex)/T | /T Ty —ey — T,

Re ((w—0) = (1.33)

22
B . I<T'<p—ey.

The above results are a bit counterintuitive. At 7" = 0 the real part of the bulk viscosity

vanishes when the chemical potential is at the center of the N-th Landau level. With deviation of

15



WeTop =100, u=(N+ 1/2)w:+T/10 WeTo =100, w—=0

ATowe [y~
;(a) — 1=0 —(b) — T=0
i ——= T=uw/50 100 | ——- T=uw/50
el i
N 10
2 50
4TD$7 " ' |
3 Hne |
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T=0 =0
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Figure 1.2: The real part of the bulk viscosity in the regimes of strong (w.7p = 100, panels (a)
and (b)) and weak (w.mp = 0.8, panels (c) and (d)) magnetic fields at zero (solid curves) and at
finite (dashed curves) temperature. The dependence of Re ( on frequency is shown on panels (a)
and (c). Thin black dashed line at the panel (a) corresponds to the value of the bulk viscosity at the
w = kw, for well-separated Landau levels, cf. Eq. (1.37). Panels (b) and (d) show Re {(w — 0)
as a function of the chemical potential for strong and weak magnetic fields. Thin black dashed line
at the panel (b) corresponds to the limiting value of Re {(w — 0) at 7" = 0 in the strong magnetic
field for p = ey = T, cf. Eq. (1.31).

p from the center of the Landau level Re ((w — 0) increases and reaches the magnitude 2/(rlp)?
at the boundary of the disorder broadened Landau level. This dependence on chemical potential is
shown on Fig.1.2(b). Such unusual behavior of the real part of the bulk viscosity occurs since it
is proportional to the derivative of the density of states with respect to the energy. At nonzero 7" a
finite region of energies close to the chemical potential, | — u| < T', contributes to the integral over
energies. Therefore the bulk viscosity increases with rising temperature if 1 lies near the center of
the Landau level and decreases if the chemical potential is situated near the band edge.

The maximum value of Re {(w — 0) is the factor N7 /7, » smaller than the maximal value
of the shear viscosity and the factor N2 smaller than the maximal value of the Hall viscosity [42].

The result (1.27) suggests that the bulk viscosity oscillates as a function of frequency with
the period w.. Near harmonics of the cyclotron resonance, |w — kw.| = |[Aw|<w., k = 1,2,...,

Eq. (1.27) transforms into the following expression

Re ((w) ~ / e dz = Sethuidn VeVeran (1.34)

kw, 27910

We note that at frequencies w 2 w,. one can neglect the terms with the self energy in the right hand
side of Eq. (1.27).

At zero temperature, 7" = 0, and under assumption that k£ is much smaller than the number
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of filled Landau levels, NV, we obtain that the bulk viscosity near the k-th harmonics of the cyclotron

resonance, k = 1,2,...,1s given by
o2l — |Aw|) |Awl| sgn(Aw) |Aw| ©—en
R = r—|u— = )
eCw) | ( T ) = Ol ( r ° T )

(1.35)

Here ©(z) stands for the Heaviside theta function and sgn(Aw) at Aw = 0 is equal to zero. The

functions F; 5 are defined as (0 < x < 2,0 < |y| < 1)

11—z

il = /dt”—twl — (t+a)?,

-1

(1.36)

min{y,1—x}
Folz,y) = / dt V1 —124/1 — (t +x)2.

max{y—z,—1}

We mention that this result suggests that the magnitude of the bulk viscosity at the harmonics of

the cyclotron resonance is independent of the harmonics number & and the chemical potential,

Re((w:kwc):ngf?gwc, kE=1,2,.... (1.37)
As one can see, the magnitude of the bulk viscosity at the harmonics of the cyclotron resonance are
the factor I"/w, smaller than the maximal value of the bulk viscosity at small frequencies, |w|<T".
Dependence of Re ( on frequency w is shown on Fig. 1.2(a). We note that the bulk viscosity decays
relatively fast with detuning from the cyclotron resonance harmonics.

The effect of nonzero temperature on the bulk viscosity at finite frequency can be described
as follows. Temperature enters the factor ( f. — f..,)/w in the final expression for the bulk viscosity,
see Eq. (1.27). Adjustments of this ‘weight’ function are considerable only if ¢ — u = O(T) or
e+ w — pu = O(T). Hence, at large frequencies, w>>T, the change of the ‘weight’ function due
to nonzero temperature is important for a small part of the energy integration region. Therefore,
at w>T' the temperature does not significantly affect the bulk viscosity. At low but still nonzero

frequencies the temperature effects are more significant.

1.6 Summary

To summarize, in this chapter we have developed the theory of the disorder-averaged bulk viscosity
of the disordered 2D electron gas in the presence of a perpendicular magnetic field within the self-

consistent Born approximation. We demonstrated that the real part of the bulk viscosity has two
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contributions: delta-function peak at zero frequency, see Eq. (1.15), and the smooth part, see Eq.
(1.27). The latter is explicitly computed in the case of weak, see Eq. (1.30) and strong magnetic
fields, see Eq. (1.31). Also we analyzed the harmonics of the cyclotron resonance in the case of
strong magnetic fields, see Eq. (1.37).

The zero field result (1.1) indicates that the method of the kinetic equation is not convenient
for computation of the bulk viscosity. This statement is well enough illustrated by Ref. [50] where
the bulk viscosity in the clean Fermi liquid was derived from the kinetic equation. One more
example is calculations of the bulk viscosity of the clean interacting Fermi gas near the unitary
limit within the kinetic equation approach [55, 56, 65]. However, it is worthwhile to explain for a
reader how the kinetic equation can lead to the bulk viscosity which is proportional to the scattering
rate, 1/79 but not to the scattering time (as standard dissipative coefficients, e.g. the dissipative
conductivity, the shear viscosity, etc.). We start from expansion of the left hand side of the kinetic
equation into formal series in 1/7,. Such an expansion can be symbolically written as Eo(néo) +
dng) + £1n§°) +.... Here ngo) denotes the equilibrium distribution function and én, stands for the
out-of-equilibrium perturbation of the distribution function induced by a bulk flow of the electron
gas. The operator L, coincides with the operator in the kinetic equation for the clean noninteracting
electron gas [46]. As a consequence, it vanishes acting on both nf;)) and dn,. The operator £,
appears due to renormalization of the electron spectrum by scattering off a random potential, i.e.,
in other words, due to Re X%, Therefore, the term Eln(go) is proportional to 1 /7. Since the collision
integral is also proportional to dn, /79, we find that the kinetic equation yields dn, o (1/79)°. This
should be contrasted with a standard situation for which dn, o Lon (1/79)~1. Next, the bulk
viscosity can be computed as ¢ o [ d*qC,dn, [50, 55, 56]. However, the function C, becomes
nonzero only due the renormalization of the electron spectrum by scattering off a random potential,
i.e. C, o< 1/7 (see similar cancellation for clean interacting problem [55, 56]). Again, we remind
that in a standard case C, is independent of 7,. Combining the estimates for dn, and C,, we find that
the kinetic equation results in ¢ oc 1/7,. We emphasize that an actual computation of £, and C,,
especially, in the presence of a magnetic field is much more complicated task than the diagrammatic
approach developed in this chapter.

We mention that the viscosity tensor affects the spectrum of bulk and edge magnetoplas-
mons [76]. Our result for the bulk viscosity in a weak magnetic field implies that the contribution
to the magnetoplasmon spectrum due to the bulk viscosity can be neglected for wave vectors ¢<kp
in comparison with the contribution due to the shear viscosity.

It is instructive to estimate the magnitude of the bulk viscosity at zero magnetic field for
a typical 2D electron gas in GaAs. In the absence of magnetic field the bulk viscosity at 7" = 0
is given as ¢ = h’vy/2m = e/(4mp,) ~ 107'% g/s where we used the value of the mobility

oy & 5-10* cm~2/(V - s). For example, one may compare the above value of ¢ with shear viscosity
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in the similar system 7 = #%vou®7 /2 = h*n? /(4¢) [42], using the electron density n, =~ 10'! cm?
one may found that  ~ 10715 g/s. Subsequently, this value may be compared with the value 102
g/s of the shear viscosity of electrons measured in graphene in the hydrodynamic regime [15]. As
one can see, in our regime the magnitude of the bulk viscosity is considerably smaller than the
magnitude of the shear viscosity, which, in turn, is much smaller than typical shear viscosity in
hydrodynamic regime.

It is worthwhile to compare our result for the bulk viscosity due to a random potential
with the result for the bulk viscosity in a clean weakly degenerate interacting Fermi gas. The
interaction contribution to the bulk viscosity decreases with the temperature as a power law, oc 7%
(see Ref. [50] for the three-dimensional Fermi liquid). This implies that the contribution to the
bulk viscosity due to disorder dominates at low enough temperatures. Therefore, we expect that
our results provide the lower bound for the residual bulk viscosity in 2D interacting disordered
electron system at low temperatures.

The bulk viscosity can be estimated from measurements in interacting Fermi gases [58, 59,
60]. It is an experimental challenge to extract the bulk viscosity from experiments in 2D electron
systems. There are two main difficulties for possible experimental measurement of the bulk vis-
cosity of 2D electrons that we are aware of. The first issue is that a varying in time deformation
should only be applied to the electronic system while impurities should not be affected. The second
one is to measure experimentally the trace of the stress tensor. The first issue may be resolved as
follows. One possibility is to use a quantum well in a semiconductor heterostructure with a d—layer
(in which impurities are situated). Then one can apply a time-dependent deformation only to semi-
conductor layers in which 2D electrons are formed. The other possibility is to use 2D electrons in
van der Waals heterostructures with impurities situated in a substrate. Then again one can apply a
slow time-dependent relative deformation de(t) = esin(27 ft) to a layer with 2D electrons only.
To deal with the second problem we propose the following. To study the bulk viscosity one needs
to measure the change in trace of the stress tensor due to an applied time-dependent deformation.
Since the trace of the stress tensor is the internal pressure of the system, one can relate the change
in the stress tensor with the change in the chemical potential at constant temperature, 6 P = n.du,
which can be obtained from the Gibbs-—Duhem relation. Then the time-dependent variation of the
chemical potential, 6u(t) = (7 f(e/n.)cos(2m ft) can be measured, e.g. by technique similar to
one reported in Ref. [77]. Using the electron density n, = 10'* em™2, frequency f = 1 MHz, and
deformation € = 10~%, we obtain the amplitude of the change in the chemical potential of the order
of 1071 K.

Finally, we mention that our techniques can be extended to calculation of the bulk viscosity

in a disordered graphene.
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Chapter 2

BULK VISCOSITY OF A CLEAN
INTERACTING 2D ELECTRON LIQUID

2.1 Introduction and formalism

In this chapter we investigate a clean 2D electron system with Coulomb interaction. Hamiltonian

of the considered system expressed in the formalism of second quantization is as follows

p2 T 2me?
H = Z %Cp,aqha +V, V= Z Viq p+qg p a0’ J/ch,V(q) — o 2.1)
p.o

‘IPP 0,0’

Here cfw and ¢, , denotes fermionic creation and annihilation operators a particle with momen-
tum p and spin o respectively. They obey anticommutation relation {cp ., CIW} = Opp'00or. In
such a system, as it was discussed in the previous chapter, scale invariance is absent. Therefore
bulk viscosity has a finite value. Nevertheless, this viscosity at sufficiently low temperatures is
proportional to electron scattering time (see Sec.1.6) and, therefore, decay to zero with decreasing
temperature.

To study the regular part (excluding delta-functional part) of the bulk viscosity we start with
the Kubo-formula that was described in the Sec. 1.2.

oo

/ dte™ ([T (), To(O)]) (2.2)

0

Re ((w # 0) =

where L? is a system volume. Now, unlike in the disordered but non-interacting case, the form of
the stress tensor 77,3 1s different from its form of in an ideal system. In interacting system the stress

tensor has a non zero contribution that comes from V' (q) [78]

P pﬁ 1 qaqp
Top = Z . I’UCPU 9Ld Z [5045‘/(61) + QTV/(Q)} CI)+q,aCL’—q,U/CP’7U’Cp,O
q,p,p’,0,0’

2 2

pozpﬁ 1 2me qda4s 2me + t

oo T 5T D [(5a5 T | reetar e (23)
q.p,p’,0.0’
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One can check in two dimensions the trace of the stress tensor simplifies to 7,,, = 2H — V.

Substituting this expression to the Eq. (2.2) we find

(e 9]

Re ((w # 0) = —ﬁ Re / dte™ t ([V (¢), V(0)]). (2.4)

0

Here A = L¢ is the area of two-dimensional system. The structure of Eq.(2.4) resembles the
structure of the Kubo formula for the clean Fermi gas with interactions in contact form (see Ref.[65]

and references therein). In our case a Coulomb potential plays a role of the contact operator.

2.2 The first order in perturbation theory

Further we will work using Matsubara technique [79]. We perform transformation from real to

imaginary time { — —i7

B
Cliwn) = 7 / dre ™ (T[V (), V(O)]) = —— Z(iwy), (2.5)

where Re ¢(w) = Re ((iw, — w +10), w, = 2.

We assume that our system has high density of electrons in the terms of the parameter

— 1 _ 2e?
Ts = m™ea? v’
elq F

rs < 1, where aq is a Bohr radius and v is a Fermi velocity. In such a
system electron-electron interaction part of the Hamiltonian V' may be considered as perturbation
[79]. In this section we compute Re ( in the first order of the perturbation theory, which is obtained
if we replace the averaging in the correlator in Eq. (2.5) over the states of the full system with

averaging over the states of the unperturbed system Re (¥ (w) = Z(© (w + i0).

2\ 2
- (5)

Re:
L/ of . ; of of X ;
X Z — <cp+q7g(7)cp,_qp, (7)o (T)Cp.o (T) iy .0 (0) Crr g (0)ac  (0) 4, (O
q#0,p,p’,0,0"
q'#0.kK ,p,p0’

B
/ dre®nT
0
)

connected

(2.6)

As one can check when we decompose Eq. (2.6) using Wick’s theorem there are eight possible
combinations of pair correlators of annihilation and creation operators. They may be separated
in two groups with four combinations. The first group contains pair correlators at the coinciding
time, diagrams that correspond to them are presented at the Fig.2.1. The second group has only

correlators with different, it is illustrated at the Fig.2.2.
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Figure 2.1: Diagrams corresponding to the Kubo formula of the bulk viscosity in the first non-
zero order and have pair correlators at the coinciding time. Bold solid lines denote pair correlation
function of electron, while curl lines denote electron-electron interaction

Figure 2.2: Diagrams corresponding to the Kubo formula of the bulk viscosity in the first non-zero
order and do not have pair correlators at the coinciding time. Bold solid lines denote pair correlation
function of electron, while curl lines denote electron-electron interaction
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As one can check all four diagrams in Fig.2.1 give the same contribution

2me?\ / , (—1)
Zo(iwy,) = 4( oA > Rei/dm“"” Z — Ny qMp—q'Gp(T)Gp(—T)
0

/
q#0,q9'#0,p,0 49

B
ome?\ . 1
= -8 ( Wj ) Rei / e"“rdr g —Np_qp—qTp (1 — 1), 2.7
2 L}
0 q70,q'#0,p

where G,(7)G,(—7) = —np (1 — n,) relation was used. Since np_qnp_gnp (1 —np) does not
depend on 7, an integral over 7 in Eq. (2.7) is zero when w,, # 0. When w,, = 0 the integral is
purely real, and therefore Zy(iw,,) = 0 and does not contribute to the real part of the bulk viscosity.

Let’s now consider for diagrams from Fig.2.2 separately. As one can check Z,(iw,) =

Za(iwn,) = Zs(iwy,), Za(iwy) = Ze(iwy) = Za(iwy,)

2\ 2 4 _
Z (iwp) = (2;22) Rei/dTGiwn Z ﬂgp(7')91:'—q(_T)gp—q—q’(T)gp—q’<_7')a (2.8)

4.9'.p,0 9
. ome?\: [ N 1
Zoliwn) = ( 5 ) Rei / dre™n Y- ?g,,(T)gp,q(—T)gk(—T)gk,q(r). (2.9)
0 q,p.k,0,0’

Performing Matsubara frequency summation and summation over spin indices, then chang-

ing w, — w + 10 and taking the real part (see App.(A.2)) we obtain :

Zi(w) = —2 Z S(w—E5+E&at&-a— S-a—a) [np(&) — np(& — w)]

q.9',p 9
X [nF(&p—q) + 15 (Ep—a-a — Sp—a)] [MF(Ep—q) — NF(Ep—q'—q')] (2.10)
Za(w) = 4 Z et éhpq_; Fhbed) (nr(&p) — nr(§p —w)]
qp.k
X np(§p—q) + 18(Ek—q — &&)] [PF (&) — nr(8kq)] (2.11)

As one can see from this expressions the main contribution to Z; and Z, from the summation over
momentum comes from the area where k, p are near to the Fermi surface and |q|, |q'| < kp, where
kr is a Fermi momentum. Using this assumption and performing integration over p and k in the

linear spectra approximation &, = vg(p — kp) and &, = vp(k — kp), we obtain (see App.(A.3))

§(w — L9’ th(2 —vpq th(Zvpq’
( ) Ginh( /Q)Uqu/pco (Svrqp/p) — vrq'p/pcoth(5vrq'p/p)

qq sinh(Svr(q — q')p/p) sinh(5 [vr(q + q)p/p])
2.12)

Z1(w) =~ vy Z

q,9’,p/p
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- 2 d(w—vrq(p/p —k/k)) . VEqQP/p vpqk/k
Zale) =G ) 7 sinh(Be/2) G Gorap/(2p)) sinh(Borqk) (2))°

(2.13)

q.p/p.k/p
where 1 is the density of states at Fermi level.

2.3 Summary

To sum up in this chapter we derived an analytical expression in integral form for the bulk viscosity
in the system with Coulomb interaction in the first order in perturbation theory. As one can see tt-ﬁleeeh
expression is divergent at small ¢, ¢’. To deal with that problem we-foHeowing: one may insert loop
diagrams considered in the random phase approximation (RPA) into the curl lines at Fig.2.2 and-

, where k7 r is a Tomas-Fermi vector. This

th+s-w111 result# in the vertices regularlsatlon —
10 over

procedure will make 1nteé)rat q, ¢’ convergent and result§ in ! finite value for the bulk viscosity.
RPA
Moreover, if this insertion of the PRA diagrams cllzaan-g% nly the — and factors in the Eq (2.12)

and Eq.(2.13) then these equations will reproduce expected temperature dependence (X — T2

quk

(see Sec.1.6) at small temperatures. This assumption will be investigated in our further Work.
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CONCLUSION

To makme investigated bulk viscosity of a two-dimensional electronic
system. "Separately was studiedtwo cases'of non-interacting disordered system in external mag-

netic field a

clean system with Coulofb interaction. Analytical expressions for two these cases

were obtained. Whe leld is weak, contribution to the bulk viscosity from disorder is
proportional to the frequency of electron-impurity collisions and stays finite at zero temperature. In
contrast, contribution that arise from electron-electron interaction decays to zero with decreasing
temperature.

We plan to continue further investigation of the viscosity in the disordered and interact-
ing electron system,t %eev}&gg(%esults obtained in the second chapter and then study a generalized

problem of the system that has both disorder and electron-electron interaction.
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Appendix A

DETAILED MATHEMATICAL
DERIVATIONS

A.1 Ladder contribution to the bulk viscosity

Here we present a brief derivation of Eq. (1.25). Diagrams corresponding to ((°) are shown in Fig.

1.1(c). We find

X0+ X2+ x¥+ xW1, (A1)

Here X stands for the diagram in the upper left panel in Fig. 1.1c, X® for the upper right panel,
X ®) for the bottom left panel and X for the bottom right panel, respectively. Each of the four
diagram X; consists of three blocks: two self-energies at the vertices and the diffuson ladder in the
middle. This ladder represents an infinite sum of diagrams with the Green’s functions at the top and
bottom, and arbitrary number of vertical dashed scattering lines. For computation of such diagrams
it is convenient to rewrite TrV Im GE,  VImGE as —(1/4)TrV (GE,,, — G4,,) V (GE — GA4).

After such transformation each contribution X ) has four different terms with particular combina-

tion of the Green’s functions. For the first contribution we obtain

Mt 2 70 2 70

0 RR n o0 AA n
X = _TAsren 1) (HO (w)) - ToAsasa () S (Ho (w))

A g 3 (M) e ) 3 (1))

n=0 70 2 n—=0 7o
A BESE TR (w) | BAEA T (W) BERA T (w)  BABE T (W)
- 2 1 — TIER(w) /7o 1 — g4 (w) /7o 1 — A (w) /70 1 — I (w) /7o |

(A2)
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As one can check, Xg), = Xéloz Next, in a similar way, we find

oA EHIwW) (S T (B w)  (82) T (w) ]
2 1= w)/n T 1= W)/ T-I§ W)/ 1= TR (w) /|
(A3)

v oA (PR w)  (SA)Tw)  (S4,) T W) (S5,) T3 (w)]
2 1O/ 1=t W)/ 1T w)/m 1= 1R W)/ |
(A4)

Combining these four contributions together, one can derive Eq. (1.25).

A.2 Frequency summation

Here we present brief derivation of Eqs.(2.10,2.11) from Egs.(2.8, 2.9). Firstly, we express every

7(2m+1)

Green function as Fourier series G,(7) = _ Gy (iw,, )¢ with summation over w,, = =3
m

frequencies, then performing integration over 7 one may obtain

2 [2me?\” 1
Zilion) =~ 3 (o ) Rei S S i) GpaliGp-0)p-g-a s,

q,9',p g m,k,s

(A.5)

) 4 [2me?\? . 1 ) . ) )

Zo(iwy,) = 7 < oA ) Rei Z — Z Gp (1w ) Gp—q(1ws) Ok (iwk ) Gk—q(1Wntkts—m).  (A.6)
q,p,k m,k,s

Then one may perform summation over Matsubara frequencies w;,, wy, ws one by one using contour

integration [79]

Z (iwy,) = _2 (27T€ ) Re: Z i, ng(iwm)gp_q(mk) e (&) = e (&g -a)

62 QA q,9’,p m,k 2.C"-)n-i-k’—rn + fp_q/ — gp_q/_q/
2 (ome2\? 1 .
— _B ( 2_/4 ) ReZ Z @ Z gp(“&)m) (nF(gp—q> + ng (5P_q_q/ — gp_q,))
q,9',p m,k

nF(Sp—q’) - nF(&p—‘l’-‘l’)
Whn—m + &p-q + Ep—q — Ep—q'—a
ome?\? 1 [nr(&p) —nr(§p—q+&-a — -a-a)]
—_9 R =
( 2A ) o Z qq" wp — &+ &gt Ep—a — Ep-a'—q

q,9',p

X [nF(€p—q) + 15 (Ep—a-a — Sp-a)] [NF(Ep-q') — 1P (Ep—gq—a')] -
(A.7)
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In a similar way we get

2A apk @ iw, — Ep + fpfq + &k — équ

X [nr(&p—q) + 18(Ek—q — &&)] [nF (&) — nr(Ek—q)] - (A.8)

Then we perform analytical continuation w,, — w + ¢0 and take the real part of the denominator

using Re = m0(w + &) relation

i
Eptw+i0

Zi(w) = —2 (276 ) Z O(w—=5& +&%-qt&-a — Sp-a-a) (&) — np(Ey — w)]

/
q.9".p a4

X [”F@p—q) + ”B(gp—q—q’ - gp—q’)] [”F<fp—q’) - ”F(gp—q’—q’)] . (A9)

Zoliwy) = 4 (27@ ) Z d(w — §p + Ep—q T &k — 5k7q> [”F('fp) - nF(fp —w)]

2A q.p.k q2 iwn - ép + fp*q + gk - £qu

X [np(§p—q) + nB(Ek—q — &)] [nr (k) — nr(§k—q)] - (A.10)

A.3 Integral calculation

In this section we present brief derivation of Egs.(2.12, 2.13) from Eqs.(2.10,2.11). Firstly, we ex-
pand energy of the quasiparticles near the Fermi surface assuming that |k — kg|/kp, |p — kr|/kr <
Land |q|/kr, || /kr < 1:

§p—a = &p — VFQP/P- (A.11)

Using this expansion one may obtain:

7 (w) =~

() s 2
/
24 q.q’,p 94

sinh(Bw/2) sech(2[¢, — w])

) A.12
“icosh(3 &, — veap/p]) cosh(3 (&, — vra'p/p]) cosh(3 (&, — vr(a + a)p/p]) (A1
Zo(w) = — (27“92>2 Z d(w—q(p/p — k/k)) sech(B&x/2) sech(BE,/2) sinh(fw/2) ‘
2A apk q° 9 Cosh(ﬁgp—“Tqu/P> COSh(ﬁ&rvqu/k>

(A.13)
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Next, one may perform summation over p,kas > — > vy [ d

P p/p
2
[ deyseehi/2)sech(315, — vrap/i /2) = 5o Lo Ty A
After that one get
- 6(w—vrq(p/p —k/k)) . vrPqp/p vpqk/k
awm-2 ), 7 ) ok o ap 207) Snh e ak/ 28]
(A.15)
__ vrqq
Zh(w) ~ 2 M sinh(fw/2)
9,9’,p/p 9

y S(vrqp/p — w) coth(5[vpqp/p — w]) — £(vrq'p/p — w) coth (5 [vrq'p/p — w))
sinh(Svp(q — q')p/p) sinh(£ [vp(q + q)p/p — w])
(5((,0 _ quq

e ) o vrqp/pcoth(Svrqp/p) — vrq'p/pcoth(Svrq'p/p)
qq’ n(Bw/2) sinh(Zvr(q — q')p/p) sinh(£ [vp(q + q)p/p))

(A.16)

=~ E

q,9’,p/p

. . / .
where in the last line w = % < ”f;# relation was used.
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