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1 Introduction

Mutual influence of magnetism and superconductivity in heterostructures has
long history of research. Recently, superconductor–ferromagnet (SF) bilayers
hosting topologically nontrivial magnetic configurations have attracted much
attention. Skyrmions in SF heterostructures can host Majorana modes and,
therefore, serve as a scalable topological quantum computing platform.

In [1] it was predicted that a Néel-type skyrmion and a Pearl vortex
interacting via stray fields are repelled from each other to be located at a finite
distance. However, Majorana modes are predicted for a coaxial state. In this
project we study a way to alter the stability of noncoaxial configuration and
to make the skyrmion attract to the center of the vortex.

2 Skyrmion and Pearl vortex

2.1 Model

We consider a thin heterostructure consisting of a thin dielectric ferromag-
netic film, a thin superconducting film, and the thin dielectric insulator be-
tween them, which suppresses proximity effects.
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The free energy of a thin chiral ferromagnetic film interacting with a Pearl
vortex is given by

(1)F [m] = df

∫
d2r

(
A(∇m)2 +K(1−m2

z) +D[mz∇ ·m− (m · ∇)mz]−

−Msm ·Bv

)
.

Here m(r) is the unit magnetization vector, Ms is the saturation magnetiza-
tion, and df is the thickness of the ferromagnetic film. Parameters A > 0,
K > 0, and D stand for the exchange, perpendicular anisotropy, and DMI
constants, respectively. The z axis is directed perpendicular to the film.

2.2 Derivation of the Euler-Lagrange equation

The magnetization of any radial symmetric configuration can be sought as
m = er sin θ(r) + ez cos θ(r). Substituting this into Eq. (1), we obtain

(2)
F [θ(r)] = 2πdf

∫
dr r

(
A

(
(θ′)2 +

sin2 θ

r2

)
+K sin2 θ +

+D

(
cos θ sin θ

r
+ θ′

)
−Ms(Br sin θ +Bz cos θ)

)
.

Minimizing the free energy and rescaling r → r/ℓw, where ℓw =
√
A/K

is the domain wall width, we derive the Euler-Lagrange equation,

2

(
θ′′ +

θ′

r

)
−
(

1

r2
+ 1

)
sin(2θ)+

4ϵ sin2 θ

r
+2γ (bz sin θ − br cos θ) = 0, (3)

where we introduced two dimensionless parameters: the effective strength of
the Pearl vortex

γ = (ℓw/λ)(Msϕ0/8πA)

and the DMI strength
ϵ = D/2

√
AK.

The functions br(r) and bz(r) are the rescaled projections of the magnetic
field of the Pearl vortex in the ferromagnetic film,

BV = −(ϕ0/4πℓwλ)[br(r)er + bz(r)ez].
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2.3 ”No skyrmion” configuration

If condition θ(r = 0) = 0 is assumed, the solution of Eq. (3) describes
the magnetization of initially homogeneous ferromagnetic film without a
skyrmion in the magnetic field of the Pearl vortex. According to [2], the
approximation br ≈ bz ≈ 1/r can be used and Eq. (3) can be reduced to

θ′′ +
θ′

r
−
(

1

r2
+ 1

)
θ +

γ

r
= 0. (4)

Solving (4) with the second boundary condition θ(r = ∞) = 0, we obtain

θγ(r) ≈ γ[K1(r)− 1/r], (5)

where K1(x) is the modified Bessel function of the second kind.

2.4 Free skyrmion

In this section we try to reproduce well-known results for a free skyrmion
described by the solution of

2

(
θ′′ +

θ′

r

)
−

(
1

r2
+ 1

)
sin(2θ) +

4ϵ sin2 θ

r
= 0 (6)

with boundary conditions θ(r = 0) = χπ, where χ = ±1 is the chirality of the
skyrmion, and θ(r = ∞) = 0. Since Eq. (6) is being solved numerically, both
conditions can not be applied directly. So, we can use so-called “shooting”
method, replacing them by

θ(r = ξ ≪ 1) = χπ and θ′(r = ξ ≪ 1) = c,

where constant c should be found by the iteration procedure to satisfy con-
dition θ(r = ∞) = 0.

The solution of Eq. (6) can be approximated with high accuracy by 360◦

domain wall ansatz

θR,δ(r) = 2 tan−1 sinh
(
R
δ

)
sinh

(
r
δ

) . (7)

Having found the numerical solution, we fit it by Eq. (7). The Fig. 1 shows
that curves coincide up to r ≈ 15.

The second way to obtain parameters of the ansatz is to substitute it into
Eq. (2) and minimize F (R, δ). These two approaches can be compared using
Fig. 2.
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Figure 1: The figure shows solution obtained by ”shooting” method for ϵ =
0.4 (blue curve) and its fitting by 360◦ domain wall ansatz (orange curve).

Figure 2: The figure shows R(ϵ) derived from numerical solutions (blue dots)
and from minimizing free energy with the 360◦ domain wall ansatz (orange
dots).

2.5 Skyrmion with vortex

The same methods of analysis, as in the previous section, are applied to the
Eq. (3) with bz = br = 1/r. In this case the modified 360◦ domain wall ansatz
is given by
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(8)

θR,δ,γ(r) = θR,δ(r) + θγ(r) cos(θR,δ(r))

= 2 tan−1 sinh
(
R
δ

)
sinh

(
r
δ

) + γ

[
K1(r)−

1

r

]
cos

[
2 tan−1 sinh

(
R
δ

)
sinh

(
r
δ

) ] .
We made sure that in this case the solution with negative chirality exists

and for some ϵ, γ more than one solution with positive chirality can be found
in agreement with [2]. Fig. 3 shows that the modified ansatz gives more
precise approximation than well known one.

Figure 3: The figure shows one of numerical solutions with positive chirality
for ϵ = 0.3, γ = 0.522 (blue curve), its fitting by 360◦ domain wall and
modified ansatz (green and orange curves respectively).

3 Ferroelectric effects

3.1 Polarization of skyrmion

As it was shown in [3], in inhomogenius ferromagnetic film electric polariza-
tion occurs,

P = αχeM
2
s [(m · ∇)m−m(∇ ·m)] (9)
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where α is the spin flexoelectric constant, χe is the electric susceptibility.
Substituting m = er sin θ(r) + ez cos θ(r) in Eq. (9), we obtain

(10)
Pr = −αχeM

2
s

sin2 θ

r
,

Pz = −αχeM
2
s

(
θ′ +

sin θ cos θ

r

)
.

Figure 4: Rescaled projection of the polarization for numerical solution (blue
curve) and model fitting (orange curve) for free skyrmion (left panel) and
skyrmion with vortex (right panel).

3.2 Extended Euler-Lagrange equation

Interaction of skyrmion with an external elecric field adds∫
d2r

4πP · E
8π

to the free energy. In the proximity of the ferromagnetic and superconducting
layers the field is perpendicular to the surface, and only components parallel
to the z axes are sufficient:

∆F [θ] = −πdfαχeM
2
s

∫
dr rEz(r)

(
θ′ +

sin θ cos θ

r

)
. (11)

Note that Eq. (11) looks like DMI term and

(αχeM
2
s /2)

√
AK

(
−2

sin2 θ

r
Ez −

∂Ez

∂r

)
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has to be added to the lhs of Eq. (3),

(12)
2

(
θ′′ +

θ′

r

)
−

(
1

r2
+ 1

)
sin(2θ) +

4(ϵ− βez) sin
2 θ

r
− 2βe′z

+2γ (bz sin θ − br cos θ) = 0.

The function ez(r) is the rescaled projection of electric field. We also intro-
duced

β = (αχeM
2
s /2)

√
AK(Ez/ez).

which can be treated as an effective field strength.

3.3 Point charge field configuration

Since skyrmions have nonzero electric polarization, they can be manipulated,
for instance, using a conductive needle with a certain potential. In real ex-
periments the exact configuration of electric field is unknown since it strongly
depends on the shape of the tip, which is usually uneven. We attempted to
suggest some simple to analyse possible shapes of the needle. In this sec-
tion we model it with a ball on a thin conductive thread, that is a point
charge in the first approximation. Some ideas to specify the model is given
in Appendix A.

The charge is placed above thin heterostructure on the height h. So, for
large distances between the charge and the superconductor the field near the
film is given by

Eq,z|z=+0 =
2qh

(h2 + r2)3/2
. (13)

Effective field strength in Eq. (12) for point charge:

β = qh(αχeM
2
s )
√
AK.

We solved Eq. (12) numerically for ϵ > 0 and ϵ < 0 with nonzero γ and
compared these solutions to ones with γ = 0. Results are given on Fig. 5.

3.4 Ansatz for the extended Euler-Lagrange equation

We assumed that the new ansatz looks like Eq. (8) with θγ,β,h = θγ + θβ,h,
where θγ,β,h is the solution of the corresponding Euler-Lagrange equation for
”no skyrmion” configuration in the presence of the point charge. We found
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Figure 5: Radius of the skyrmion for different h and (upper panel) ϵ = 0.5,
γ = 0.2 (left), γ = 0 (right). (Lower panel) ϵ = −0.1, γ = 0.4 (left), γ = 0
(right).

that θβ,h ≪ θγ for small β and fitting the numerical solution of the extended
Euler-Lagrange equation by Eq. (8) gives almost the same results for the
radius of the skyrmion as the numerical solution of θ(r) = χπ/2.

3.5 Stability of the coaxial configuration

The free energy for slightly shifted configuration is given by

(14)
δF (a)

4πAdf
=

∫ ∞

0

dr{γr[δbar sin θ+ δbaz(cos θ−1)]−βδeaz (sin θ cos θ+rθ′)},

where a is such a small spacing, that the reshaping of the skyrmion in the
leading approximation may be neglected. The functions δbar , δb

a
z and δeaz

mean the difference between the dimensionless r- and z-projections of the
vortex field and z-projection of the point charge field averaged by rotation of
the system around the center of the skyrmion, i.e., over all possible directions
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of the vector a, and fields before shifting.

δbar = −Θ(a− r)

r
, δbaz = K

[
4ar

(a+ r)2

]
2

π(a+ r)
− 1

r
(15)

δeaz =
2
√
h2 + (a− r)2E

(
− 4ar

h2+(−a+r)2

)
a4 + 2a2(h− r)(h+ r) + (h2 + r2)2

+

+
2
√
h2 + (a+ r)2E

(
4ar

h2+(a+r)2

)
a4 + 2a2(h− r)(h+ r) + (h2 + r2)2

− 1

(r2 + h2)3/2
(16)

Here, Θ(z) denotes the Heaviside step function, K(z) and E(z) are the
complete elliptic integrals of the first and the second kind respectively.

Having numerically integrated Eq. (14), we obtained stability diagram
Fig. 6. In the blue region δF (a) − δF (0) < 0, i.e. the coaxial configuration
is unstable.

Figure 6: Stability diagram for ϵ = 0.4, h = 1. In the blue region the coaxial
state is unstable.

A Field of a needle

Since an exact description of a shape of the needle is complicated, we at-
tempted to suggest the simplest model which allows us to express boundary
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conditions correctly.
Firstly, we consider an infinite metal plane z = 0 and an infinite metal

needle coinciding with the z axes for zn > h > 0. After reflecting the needle
it is convenient to use prolate spheroidal coordinates

(17)

x = a
√

(σ2 − 1)(1− τ 2) cosφ

y = a
√

(σ2 − 1)(1− τ 2) sinφ

z = aστ

due to a simple formulation of constant potential difference between the
plane and the needle condition Φ(τ = ±1) = ±V . The Laplacian in chosen
coordinate system is given by

(18)
∇2Φ =

1

a2(σ2 − τ 2)

{
∂

∂σ

[(
σ2 − 1

) ∂Φ
∂σ

]
+

∂

∂τ

[
(1− τ 2)

∂Φ

∂τ

]}
+

1

a2(σ2 − 1)(1− τ 2)

∂2Φ

∂φ2
.

The last term equals zero due to rotational symmetry. Variables can be
separated by substitution Φ(σ, τ) = ϕ(σ)ψ(τ), which leads to

(19)

(
σ2 − 1

)
ϕ′′(σ) + 2σϕ′(σ)− λϕ(σ) = 0(

τ 2 − 1
)
ψ′′(τ) + 2τψ′(τ)− λψ(τ) = 0

Anyway, the solution will have logarithmic divergence in proximity of the
surface of the needle. One may suggest to solve the problem for the needle of
small but finite size. However, in prolate spheroidal coordinates the distance
between focal points and the shape of paraboloids are not independent, so the
solution obtained for a specific needle shape is correct only for one position.

B Other branches

While solving Eq. (12) for the point charge field we noticed that for small h
and large β more than one solution satisfying boundary conditions is present.
In the main text We studied solutions corresponding to the minima of free
energy, while the rest could correspond to maxima or saddle points. The
figure below shows radius dependence on β for 2nd branches. Their stability
and conditions for the transition to a stable branch are objects of further
research.
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